V-NYI #9: Introduction to Mathematical Linguistics

Vinny Czarnecki & Scott Nelson
6/27/2024 -7/12/2024

Contents

Opening Remarks
1 Overview + Mathematical Background: Sets, Relations, and Functions
1.1 Topicsand Goals
1.2 What/Why Mathematical Linguistics?
121 Starting Assumptions Lo
122 MotivatingIdeas o oL
1.2.3 The Subregular Hierarchy
1.3 Sets e e e e
1.4 Relations e e
1.5 Functions e e
1.6 Closing Thoughts and Further Reading
2 Mathematical Background: Logic, Recursive Data Structures, Automata
21 Topicsand Goals
22 Logic
2.3 Recursive Data Structures e
231 Strings
232 Trees e e
24 Automata. e
241 String Acceptors
242 Tree Acceptors
243 String Transducers oL
244 TreeTransducers e
2.5 Closing Thoughts and Further Reading
3 Formal Languages and Automata
31 Topicsand Goals
3.2 Formal Language Theory
3.3 The Subregular Languages and Phonology
3.3.1 The Chomsky-Schiitzenberger Hierarchy
3.3.2 Subregularity and Phonology
33.3 Finite Languages
3.34 Strictly Local Languages L.

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

3.3.5 Strictly Piecewise Languages 43

3.3.6 Tier-based Strictly Local Languages 44

3.4 The Non-regular Languages and Syntax 45

3.5 Closing Thoughts and Further Reading 49

4 Model Theory and Logic 50
41 TopicsandGoals 50
42 Models 50
43 First-Order Logic 55
4.4 Model-theoretic Formal Language Theory 58
441 Strictly Local Languages L. 58

4.4.2 Strictly Piecewise Languages 61

443 Tier-Based Strictly Local Languages 62

45 Interpretations. L o 64
451 PhonologicalMaps L oo 66

4.6 Closing Thoughts and Further Reading 70
Closing Remarks 71
Appendix 1: Practice Problems 72
Lessonl 72
Lesson2 e 74
Lesson3 e 76
Lesson4 79

Opening Remarks

Hello and welcome to Introduction to Mathematical Linguistics at V-NYI # 9. This course
is part of the M/W/F block 3 and meets from 12:00-1:20 pm NY time (7:00-8:20 pm St.
P/Kyiv time). Since this is an introductory course, we designed the lessons under the
assumption that most students would have more background in linguistics than in math
(beyond what is required in grade school). Because of this, we start off with two lessons
that focus primarily on math. Then we shift gears and show how we can use various types
of mathematical objects to describe various types of linguistic knowledge.

A rough outline for how we will work through these course notes is shown in the table
below.

Lecture Date Lesson(s)

6/28 1
7/1 2
7/3 3
7/5 3
4
4

7/8
7/10

Nl WIN -

Within the text itself you will find material set off from the main text in two different color
boxes. An exercise block contains exercises that we may or may not do together during
the course meetings. An information block contains additional material that we think is
interesting /important, but beyond the scope of the main course. At the end of the course
notes is an appendix with additional exercises. Students are encouraged to attempt these
exercises as homework assignments, but doing so is not required.

In preparing our lessons, we drew heavily on the notes of our colleagues who have pre-
viously taught similar material in various capacities: Siddharth Bhaskar, Jane Chandlee,
Thomas Graf, Jeffrey Heinz, Adam Jardine, Jon Rawski, and Bruce Tesar. While they have
certainly influenced our thinking, all mistakes and non-technical claims about the material
are solely our own.

We look forward to working through this material together with you!

Lesson 1

Overview + Mathematical Background:
Sets, Relations, and Functions

1.1 Topics and Goals

In this first lecture we will provide a brief overview of what mathematical linguistics is and
why we think it is a useful way to study natural language. Afterwards, we will introduce
some formal mathematical objects that will be used throughout the course. By the end
of this lecture you should be able to describe mathematical linguistics in your own words
and have a basic intuition about some of the formal tools used by mathematical linguists.

1.2 What/Why Mathematical Linguistics?

Studying linguistic phenomena with mathematics is the most simple definition one can
give for mathematical linguistics, but mathematics is a large field and not all subfields are
represented equally in mathematical linguistics. In this course, we will focus primarily on
how set theory, logic, and automata are used to model linguistic cognition.

The following two quotes explain why being mathematically explicit is useful for linguistic
theorizing. We would like to stress that we view mathematical formalization as part of the
theoretical process and not a separate task left for specialists. Our goal in this course is to
provide you the tools that you can use in your theorizing toolbox moving forward.

“The aim of formalization is to cast initial ideas using mathematical expres-
sions (again, of any kind, not just quantitative) so that one ends up with a
[formalization] f — or at least a sketch of f. Once this is achieved, follow-up
questions can be asked: Does f capture ones initial intuitions? Is f well de-
fined (no informal notions are left undefined)? Does f have all the requisite
properties and no undesirable properties (e.g., inconsistencies)? If inconsis-
tencies are uncovered between intuitions and formalization, theorists must ask
themselves if they are to change their intuitions, the formalization, or both...In

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

practice, it always takes several iterations to arrive at a complete, unambigu-
ously formalized f given the initial sketch” — van Rooij and Baggio (2021, p.
686).

“The quality of formalization depends both on the degree of faithfulness to
the original ideas and on the mathematical elegance of the resulting system.
Because the proper choice of formal apparatus is often a complex matter, lin-
guists, even those as evidently mathematical-minded as Chomsky, rarely de-
scribe their models with full formal rigor, preferring to leave the job to the
mathematicians, computer scientists, and engineers who wish to work with
their theories. Choosing the right formalism for linguistic rules is often very
hard. There is hardly any doubt that linguistic behavior is governed by rather
abstract rules or constraints that go well beyond what systems limited to mem-
orizing previously encountered examples could explain...The only way to shed
light on such issues is to develop alternative formalizations and compare their
mathematical properties. — Kornai (2007, pp. 4-5).

1.2.1 Starting Assumptions

This course assumes a Nativist approach to linguistics, meaning that the internal, mental
computations and representations that give rise to the human language faculty are part of
an internal grammar, which is the result of a genetic endowment.

Language is a biological fact about humans in a similar way that hair follicles or exten-
sor muscles are. Like hair follicles and extensor muscles, while communication systems
among animals are undoubtedly prevalent and quite diverse, Language is a uniquely hu-
man trait.

We’ve evolved to have an innate capacity for producing and perceiving Language, and
the processes and structures that give rise to this are internal to the mind.

They are also intensional, meaning that they make infinite use of finite means.

The majority of modern linguistics, in this tradition, aims to answer the question:

What is the nature of linguistic computations and representations?

Mathematical linguistics uses various tools from within mathematics to aid in answering
precisely this question.

1.2.2 Motivating Ideas

Formal Language Theory is concerned with different classes of stringsets, treesets, or map-
pings thereof, and the relative differences in their complexity. This will be discussed at
length in the course, but as a motivating example let’s think about the following two pat-
terns, which display the sort of abstraction we will be dealing with.

Let ¥ = {a, b} be an alphabet of symbols used to create words.

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

We will define a language L as a set of strings.
Consider the following languages:

e [y =a"b={ab,aab,aaab,aaaab, ...}

o Ly, =a"b" = {ab, aabb, aaabbb, aaaabbbb, . ..}

On the surface these look incredibly similar, but they are drastically different in terms of
their complexity. The sort of machine you need to generate L, is less formally expressive
than the one you need to generate L,. Why is that?

Imagine I have two buttons. When I hit the first button I receive an a, and when I hit the
second button I receive a b— and any time I hit either button, the character gets tacked on

to a string.

Button 1 Button 2

Generating L:

I can hit Button 1 as many times as I want without keeping track, as long as I hit Button
2 only once. Then and only then is my string in the language. Any other combination of
hitting these buttons will not be in the language.

Generating Lo:

I can hit Button 1 as many times as I want; however, how many times I hit Button 2 neces-
sarily depends on how many times I hit Button 1. If I hit Button 1 thirty times, I need to
hit Button 2 thirty times for my string to be in the language.

The difference here is that generating L, requires keeping a memory of arbitrarily many char-
acters. If you've seen n a’s, you have to know that you've seen n a’s to get the right amount
of b’s. In generating L;, you don’t need this kind of memory.

L, is a Regular language which means it can be recognized by a Finite State Acceptor,
whereas L, is a Context-Free language which means it can be recognized by a Pushdown
Automaton (meaning that L, is of the same sort of compelxity as the early theories of
syntax).

Throughout the course we will see other ways of expressing these complexities using logic
and automata.

This is just one example of the difference in complexities of formal languages.

The Chomsky-Schutzenberger Hierarchy is a hierarchy of language classes that differ in
complexity.

Regular < Context-Free < Context-Sensitive < Recursively Enumerable

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Any language that is recognized by a:

Finite State Acceptor is Regular.

(non-deterministic) Pushdown Automaton is Context-Free.

Linear Bounded Automaton is Context-Sensitive.

e Turing Machine is Recursively Enumerable.

Throughout the course, we will go into much greater detail about what these things mean,
but for now the main point is that languages (and mappings) differ in terms of their com-
plexity, and the expressive power required to generate or recognize them differs.

1.2.3 The Subregular Hierarchy

Early research relating Formal Language Theory to linguistic theory placed a lower com-
plexity bound at the Regular languages; however, more recently, research in phonology
and morphology has resulted in a more nuanced understanding of less complex, subregu-
lar classes (Chandlee, 2017; Heinz, 2018).

Phonological generalizations were previously thought to be Regular, meaning phonotactic
well-formedness can be recognized by Finite State Acceptors and phonological processes
can be carried out using Finite State Transducers. But is this a strong enough hypothe-
sis? The Subregular Hypothesis conjectures that phonological generalizations exist within
classes and mappings that exist lower wihtin this hierarchy than Regular.

Below, The Subregular Hierarchy, a refinement of classes beneath the Regular languages
is shown:

+1 <
REG MSO
// S
LTT _— FO
TSL
LT PT P
| |
SL - SP CNL
FIN

Figure 1.1: The Subregular Hierarchy; 41 refers to constraints defined using immediate
successor, whereas < referes to constraints defined using general precedence; MSO refers
to Monadic Second Order Logic, FO refers to First Order Logic, P refers to Propositional
Logic, and CNL refers to Conjunction of Negative Literals; Combinations of logic and
representation result in different language classes (explained in more detail in Lecture 3).

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Expressing linguistic generalizations through the lens of stringsets within this hierarchy
has lead to a great deal of research within computational phonology, morphology, and
more recently, computational syntax.

In this course, we will see the tools that lead to understanding the impact of this research,
and how to contribute to it!

1.3 Sets

A set is a well-defined collection of objects. Objects in this set are called members or ele-
ments.

Sets can have intensional or extensional descriptions.

Consider the following examples:

Intensional Extensional
Oddpes {2x+ 1|z e N} {1,3,5,7,...}
Ly {a"b|n € N} {b, ab, aab, aaab, aaaab, ...}

NYIs,. {x|xhasbeenan NYI faculty member} {John Bailyn, Jerry Fodor,
David Pesetsky;,. .. }

Table 1.1: Examples of Sets

To say that a is an element of the set A, we say a € A (aisin A) and to say that it is not an
element, we say @ ¢ A (aisnotin A).

Thinking About Set Membership

1. What are some statements that hold for these sets?
2. What are some statements that don’t hold?

AUB
The union of two sets A and B, denoted A U B, is the
set containing all elements that are either in A or in B.

ANB
The intersection of two sets A and B, denoted AN B,
is the set containing all elements that are only in both
Aand in B.

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Vowel Inventories - Union and Intersection

Consider the following vowel inventories:
West Greenlandic (Hagerup, 2011): {i, a, u}
Malagasy (Howe, 2021): {i, e, a, 0, u}
Swedish (Riad, 2014): {i, y, e, 9, €, @, 0, u, u}

Answer the following questions:
1. What is the union of West Greenlandic and Swedish?
2. What is the intersection of Malagasy and Swedish?
3. What is the intersection of West Greenlandic and Malagasy?

A set B is called a subset of a set A if every element of B is also an element of A. This is
denoted by B C A. If every element of B is also an element of A and B # A then we say
B is a proper subset of A. This is denoted by B C A.

A set Ais called a superset of a set B if every element of B is also an element of A. This is
denoted by A O B. If every element of B is also an element of A and B # A then we say
A is a proper superset of B. This is denoted by A D B.

The set with no elements @ is called the empty set.

Two sets A and B are called disjoint if they have no elements in common. Namely; if it is
the case that AN B = @.

The Set Difference of two sets A and B is denoted by A \ B (sometimes A — B) and
represents the set of all elements that are in A but not in B, shown below:

A\ B

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Vowel Inventories - Subset/Superset/Difference

Consider the same vowel inventories from above:
West Greenlandic (Hagerup, 2011): {i, a, u}
Malagasy (Howe, 2021): {i, e, a, 0, u}
Swedish (Riad, 2014): {i, y, e, 9, €, @, 0, u, u}

Answer the following questions:
1. Which vowel inventories stand in a subset/superset relationship?
2. Are any of the vowel inventories disjoint with another?
3. What is the set difference of West Greenlandic and Swedish? And vice versa?

The Cartesian Product of two sets A, B is

Ax B ={(a,b) | a € A, b € B}, which denotes the set of all ordered pairs where the first
element is in A and the second element is in B.

More generally, the n-fold Cartesian Product of n sets is

Xy xXox - x X, ={(z1,22...,2,) | 11 € X1, 2 € Xo,..., x, € X,,}, which denotes the
set of all ordered tuples where the n-th element is in X,.

The Power Set of a set A is

P(A) = {B | B C A}, which denotes the set containing all of the subsets of A (including
the empty set).

1.4 Relations

We define a Relation with arity » as a subset of the Cartesian Product X; x --- x X,. A
Binary Relation R between sets X and Y is therefore an element of P(X x Y'). We denote
this as R C X x Y and will write either xRy or R(z,y) to mean (z,y) € R.

There are certain important properties that a relation R may hold over a set X:
e Reflexive-forallz € X, zRx
o Irreflexive - for all z € X, it is not the case that Rz
e Symmetric - for all x,y € X, if Ry then yRx
e Antisymmetric - for all z,y € X, if tRy and yRz then x = y
e Asymmetric - for all z,y € X, if xRy then it is not the case that yRx
e Transitive - for all z,y, z € X, if xRy and yRz then =Rz
e Connected - for all z,y € X, if x # y then xRy or yRx

Some schematizations of these different properties above are shown below for an arbitrary
set {a,b,c}.

10

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

o

0O

L] [] []
a b c
Reflexive Irreflexive
R
R R R R
A o
a bM a b ¢
R R
Symmetric Antisymmetric
R
R R m
- >e————>e >e————— >
a b c a b c
Asymmetric Transitive

Thinking about Relations

Can you think of any examples of relations that meet each of these properties, lin-
guistic or non-linguistic?

Note: Important Combinations of Properties

We are also interested in relations that satisfy certain combinations of these proper-
ties: Equivalence Relation - reflexive, symmetric, transitive; Partial Order - reflex-
ive, antisymmetic, transitive; Strict Partial Order - irreflexive, asymmetric, transi-
tive; Total Order - reflexive, antisymmetric, transitive, connected; Strict Total Order
- irreflexive, asymmetric, transitive, connected

1.5 Functions
Formally, a function is a special type of relation f C X x Y such that:

Vo, y, v (v,y) € fA(zy) € f) —y=y

More simply, a function is a relation where one element in a set X can be related to at most
one other element in a set Y. Note, the converse does not need to hold.

11

V-NYT #9: Intro to MathLing Czarnecki & Nelson

We say that a function f is undefined for an element = € X if there is no pair (2/,y) € f
such that = = 2/, otherwise f is defined for .

When f is defined for + we write f(z) = y or sometimes = —; y. Equivalently, we may
refer to function f as a map and say f maps = to y.

IfVx € X.(z,y) € f then we say that f is a total function, otherwise f is a partial function.

The set X is called the domain and the set Y is called the co-domain (or range) of the
function f : X — Y. Relatedly, theimage of fistheset{f(z) € Y |2 € XA f(z)is defined}
and the pre-image of f is the set {x € X | f(z) is defined}. In other words, the pre-image
is the subset of the domain where the function is defined and the image is the subset of
the co-domain where the function is defined. This is schematized below in Figure 1.2.

X Y

Figure 1.2: A function from X to Y’
A function f : X — Y is injective or one-to-one if for all y € Y, the pre-image f~!(y) has at
most one element. In other words, f maps at most one z to any given y.

A function f : X — Y is surjective or onto if for all y € Y, the pre-image f~'(y) is non-
empty. In other words, f maps onto every element of Y.

A function f : X — Y bijective it is both injective and surjective. In other words, every
element in Y is in correspondence with a unique element in X.

Injective Surjective Bijective

Figure 1.3: Examples of Injectivity, Surjectivity, Bijectivity

12

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Phonological Neutralization and Injectivity

Neutralization occurs when a phonological process eliminates a distinction between
two morphemes that was held at a previous level. Consider these data from German
final devoicing (Dinnsen and Garcia-Zamor, 1971):
1. (a) /bad+en/ — [baden] ‘tobathe’
(b) /bad/ — [bat] ‘bath’
(c) /bat+en/ — [baten] ‘asked’
(d) /bat/ — [bat] ‘ask’

Notice how the morphemes for ‘bath” and ‘ask’ contrast at the underlying level but
are the same at the surface level? This is neutralization. If we think of phonology as
a function, explain why the phonology function is not injective (and therefore not
bijective). Hint: this has to do with neutralization!

Given a function f : X — Y, where X, Y are both uniform sets such that each member of
each individual set is the same type of thing, we say that the function f has type X to Y.

Typed Functions and The A-Calculus

The idea of typed functions stems from the A-calculus (Church, 1932, 1933), which is
a universal abstract computing device thatis equivalent to a Turing machine (Turing,
1936).

In linguistics, the A-calculus plays a central role in many theories of formal seman-
tics. When you have a predicate in English like runs, this can be represented by a
function using the A-calculus as:

[runs] = Az.[z runs]

But we would also say this has the type (e, t), indicating that it is a function from
individuals to truth values. Equivalently, we can write it as runs : e — t.

Given two functions f : X — Y and g : Y — Z such that the domain of g is the co-domain
of f, we can define the composition of f and g as a single function go f : X — Z. this
is equivalent to first applying f to an input x and then applying the output of f to g, or

g(f ().

Function composition is associative: ho go f = ho (go f) = (h o g) o f, meaning that for
three functions it can apply to any two followed by the third.

13

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Commutativity and Function Composition: Derivational Morphology

1. We know that function composition is always associative (convince yourself of
this!), but is it always commutative? Namely, is it always the case that f o g =
g o f? Why or why not?

2. Consider the sets:
V = {lock, interpret, rely, ...},
Adj = {lockable, interpretable, reliable, ...},
Noun = {lockability, interpretability, reliability, ...}

and the two functions:
-able : string — string -ity : string — string

Given that these two functions add ‘able’ or ‘ity” to the end of a string, is it the
case that -able o -ity = -ity o -able?

3. Bonus: If we change the function types to match the parts of speech, what do
you think might go wrong with the composition? (hint: types)

1.6 Closing Thoughts and Further Reading

Closing Thoughts

In this lecture, we gave an overview of our ideas about mathematical linguistics and how
it can be viewed as a complementary tool in the theoretical linguists toolbox, and then
introduced some of the basic tools commonly employed by mathematical linguists. We
familiarized ourselves with sets, relations, and functions and showed how to use them to
reason about simple linguistic data .

Further Reading

For approachable (non-linguistic) resources on some of the fundamentals of sets, rela-
tions, functions, logic, basic proof techniques, etc. see Balakrishnan (2012); Eccles (2013);
Velleman (2019). For those interested, these also contain many other useful concepts that
we won't cover for time reasons. More in-depth resources on the specific tools we use
throughout the course will be given in further secitons.

For more on the underlying linguistic assumptions we make regarding what exactly it is
that we're interested in formalizing, as well as some basic exposure to some of the formal
tools we’ve seen, and how it all relates to cognitive science more generally, see Isac and
Reiss (2013).

14

Lesson 2

Mathematical Background: Logic,
Recursive Data Structures, Automata

2.1 Topics and Goals

In this second lecture we will continue to introduce the formal mathematical objects that
will be used throughout the rest of the course. Today’s topics expose us to two main pieces
of machinery used in current linguistic theorizing: logic and automata. These topics are
intimately connected but provide us with two different ways to understand various types
of linguistic structure. By the end of this lecture you should be comfortable reasoning
about the various mathematical concepts discussed and be ready to start applying them
to novel linguistic data.

2.2 Logic

Here, we will briefly introduce Propositional Logic as a building block for using logic more
generally later in the course.

Simply put, a proposition is a statement that is either true or false, but cannot be both.

Propositions

Of the following statements below, which are propositions? Of those that are propo-
sitions, which are true and which are false?

John is tall.

x is tall.

‘t’ is a voiced segment.
x is a voiced segment.

Ll .

15

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Something cannot be a proposition if it has a value that has not been specified.

Logical languages are built from two main components: a syntax and a semantics. The
syntax defines the form that terms of the language take, and the semantics defines how
those forms are interpreted logically. In the syntax of a logical language, there are atoms
which build up to make larger elements called well formed formulas (or wffs).

In propositional logic, these atoms are propositions P, @, R, . .. and a well formed formula
is a well-defined string (defined below) of these atoms combined with the following log-
ical connectives.

- A V — <
not and or implies iff

Table 2.1: Logical Connectives

Also note that the connectives V, —, and <> can all be defined using — and A, thus only
these two are included in the definition of a wif below. The truth tables below show how
each of the connectives above are interpreted, where the values 0 and 1 correspond to false
true, respectively.

-P | P Q|P+Q

P
0
0
1
1

_ O R O
—_ o O Ol >
—_ == O <
b—\OHH\L

>
1
0
0
1

SO R

Table 2.2: Truth Tables for the Logical Connectives Mentioned Above

Suppose ¢, ¢ are two atomic formulas, then:

¢ oisawff ¢ ¢isawff ¢ (pNY)isawff

A few examples of wfifs in propositional logic are shown below:

¢r ¢ (PA-Q) ¢ ~((PA=Q)AR)

11l Formed Formulas

What are some examples of strings that are not generated by our syntax? Namely,
what are some examples of ill-formed formulas?

16

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Latin exclusive and inclusive “or’

Given two propositions P, () and an arbitrary binary operator e, there are 16 logically
possible ways to interpret P e (). The connectives mentioned above are a subset of
these 16 that are commonly employed in natural language, but some languages do
make use of others.

The V is what is called ‘inclusive or’, but there is a variant @ called “XOR’” which
stands for ‘exclusive or’, defined by the truth table below (either P or) but not
both):

PoQ

— = O Ol
—_ o Rk ol
o~ O

Latin is one natural language which had this distinction encoded lexically with vel
standing for inclusive or and aut standing for exclusive or.

Defining Connectives with Connectives

1. Use the two connectives — and A to define the remaining connectives V, —, <>

2. Can all the other connectives be defined using just — and V as well?

3. Bonus: There is a single connective { which is sometimes called ‘'NAND" and
is defined with the following truth table:

P P

Q

_ _ O O
— o R ol
O = =

Can you define all of the connectives above using only 1?

As of right now, these examples are just meaningless strings. These strings are given mean-
ing through an assignment or interpretation function.

Let P be the set of all propositions and let i : P — {0, 1} be a function from propositions
to truth values that assigns a truth value to a given proposition.

So if P € P is a proposition, then i(P) = 1 means P is true and i(P) = 0 means P is
false. These are called truth valuations, since they are statements about the truth of a
proposition.

17

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Propositional Logic: Interpretation

Observe the following propositions given the elements {kt,ee}:

(P, =Xkis a voiceless segment,)
P, = aisavoiced segment,
P; = tis a voiceless segment,
P, = kisavoiced segment,
Ps = k comes before &,

P= Ps = e comes before t,

P; =t comes before &,
Py = & comes before k,

| P =... |

1. Define the truth conditions for P, — P, given the standard interpretation of
these IPA symbols.

2. Define the truth conditions for P; — Ps supposing we wanted to model the
English word “cat’.

3. How would the previous truth table differ if we were modeling the English
word “tack” instead.

4. Bonus: Suppose we wanted to model the English word “act’. How would you
interpret F;? (hint: does the precise definition of ‘comes before” affect your
answer?)

A binary satisfaction relation F between truth valuations and formulas specifies when a
formula defined by our syntax is true or false.

i F ¢ means that ¢ is true under i, or i models/satisfies ¢.
i ¥ ¢ means that ¢ is false under 7, or < does not model/satisty ¢.

As we will see, there are various properties that we can add or remove from propositional
logic that will change its expressive power. For example, by adding quantification over
variables, we get a stronger logic called First-Order Logic (also called Predicate Logic).
Instead, if we limit the connectives to only conjunction (A) and restrict negation (—) to
only atomic elements (propositions), then we get a weaker logic called Conjunction of
Negative Literals.

Later in the course, we will see how propositional logic and and other logics (both more
and less powerful) can be used to define certain language classes (and mappings) that are
very useful for linguistic theorizing.

18

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Propositional Logic: Satisfaction

Recall the propositions from the previous examples:

(P, =Xkis a voiceless segment,)
P, = aisavoiced segment,
P; = tis a voiceless segment,
P, = kisavoiced segment,
Ps = k comes before &,

P= Ps = e comes before t,

P; = t comes before &,
Py = & comes before k,

| P =... |

1. Given the 7 function you defined in the first two questions of the previous
example (modeling ‘cat’), does i model the following formulas (i F ¢)?

.¢1I:P1AP5
.¢212(P7\/P8)—>P1
o ¢3:=D

° ¢4Z:(_|P7/\P6)—>P3

2. Given the i function you defined in the first and third questions of the previous
example (modeling ‘tack”), does i model the same formulas?

3. Bonus: Define a new i function grounded in any reality you choose (be cre-
ative) and come up with some wff’s that it both models and does not model.

2.3 Recursive Data Structures

A recursive data structure is a type of data that contains other data of the same type. We
will focus on two types of structures: strings and trees.

2.3.1 Strings

A string is a sequence of symbols. Symbols can be anything: IPA letters, parts of speech,
morphemes, words, and so on. Symbols are drawn from a set called the alphabet which
is represented as 3. To define strings recursively, we rely on the constructor (-) and the
empty string A. The recursive definition of a string is as follows:

Base Case: \is a string
Inductive Case: If o € ¥ and w is a string, then o - (w) is a string

19

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

As an example, suppose we have an alphabet ¥ = {a, b, c}. We construct the string bac in
the following way:
b-(a-(c-(N))

We then can recursively check whether this is a valid string using the following steps:
1. Inductive Case: 0 =b € X, w = (a- (c- (N)))
2. Inductive Case: 0 = a € X; w = (¢ (\))
3. Inductive Case: 0 = c € ¥; w = ()
4. Base Case:) is a string

The validity of the base case percolates backwards to validate the inductive cases. In other
words bac is a valid string because ac is a valid string, ac is a valid string because c is a
valid string, and c is a valid string because the empty string is a valid string.

Representing strings as recursive data structures allows us to define sub-properties of
strings recursively as well. For example, the length of a string w, written |w| is defined
as follows:

Base Case: If w =), then |w| =0
Inductive Case: Otherwise, w = o - (z) and |w| =1+ |z|

Returning to our string bac, we recursively calculate its length the following way:
1. Inductive case: w = b - (ac); |bac| = 1 + |ac|
2. Inductive case: w = a - (¢); |ac| =1+ ||
3. Inductive case: w = c¢- (A\); |c| = 1+ ||
4. Base case: w = \; |w| =0

The length of bac is 1 + the length of ac, the length of acis 1 + the length of ¢, the length of
cis 1 + the length of the empty string which is 0. The length is ulitmatley determined by
the recursive application of the function which essentially counts the number of symbols
and terminates once it reaches the empty string.

2.3.2 Trees

A tree extends the idea of a string from one dimension to two. Recall that a string is
a sequence of symbols, so in two dimensions this becomes a sequence of a sequence of
symbols. The first dimension is linear order, the second dimension is dominance. In other
words, our structures now encode siblinghood and parenthood.

As was the case with strings, we once again will assume an alphabet of symbols 3. Whereas
we had the empty string), there is no equivalent empty tree. This is because each tree must
have a root. The closest we have is a leaf which is a tree with no daughters. We represent
a leaf as o[)]. At times we will represent leaves simply as o[].

20

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

The recursive definition of a tree is as follows:
Base Case: If o € ¥ then o[)\] is a tree
Inductive Case: If o € ¥ and w is a string of trees, then o[w] is a tree

Notice this definition relies on our previous definition of strings. Suppose we have an
alphabet ¥ = {S, NP,V P,V}. We construct the tree SN P[\] VP[V[A] NP[)\]]] in the fol-
lowing way:

SINPA- (VPVIAL- (NPAL- (A)] - ()]

A more recognizable, 2D visualization of this tree is shown below (note that the A\ need
not be shown since it is implied by the lack of a child):

S

N

NP VP

/N

V. NP

Note that our inductive case has two conditions: is the root symbol in our alphabet and is
w a string of trees. Checking the first condition is easy, but checking the second condition
is where the recursion really comes into play. We check whether the above is a valid tree
using the following steps:

1. Inductive Case: 0 = S € 3; w = NP[A] - (VP[VIA - (NP[A-(N)]- (M)
The next step requires us to check each element in our string
2. (a) Base Case: NP € X; NP[)] is a tree
(b) Inductive Case: 0 = VP € 3; w = VI[A] - (NP[A - (\))
Once again, we check every element in the string
3. (a) Base Case: V € ¥; V[)\] is a tree
(b) Base Case: NP € 3; NP[)\| is a tree

Essentially, we recurse through the tree looking for the leaves. Since leaves are valid trees,
they validate the higher level structures as long as the root of each tree is drawn from the
alphabet. Specifically in this case, because V[A] and N P[)\] are valid trees and VP € %,
then V P[V[\] NP[})]] is a valid tree. Since this is a valid tree, N P[)] is a valid tree, and
S € ¥, then SINP[\] VP[V[\ VP|[)]] is a valid tree.

We can use our recursive definition of trees to also define the set of all trees of depth n.
This is expressed with the following definition:

Ty ={al\ | a € £}
T ={aw] |aeX,weT,}UT,

21

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Similarly, we denote the set of all logically possible trees as X7 = |, T

Recursive Tree Functions

Above, we showed how to recursively compute the length of a string. This was possi-
ble due to the recursive nature of the data structure. We can do similar computations
over trees with what are called divide-and-conquer algorithms.

1. The yield of a tree is the concatenation of all of its leaves. Write a recursive
function yield(7") that computes the yield of a tree T'.

2. The depth of a tree is the maximum number of levels between the root and
lowest leaf. Write a recursive function depth(7") that computes the depth of a
tree T'.

3. The size of a tree is the total number of all nodes within it. Write a recursive
function size(7") that computes the size of a tree 7.

4. Bonus: You may have noticed some similarities between these functions. Us-
ing this intuition, how might you go about defining a single function info(7")
that combines all of this information with only a single traversal?

2.4 Automata

Automata are abstract computing machines. There are two general types of problems that
can be solved with an automaton:

1. The Membership Problem
2. The Transformation Problem

The Membership Problem: assume a set X of strings (or trees); given an input string (or
tree) x,isx € X?

The Transformation Problem: assume a string to string (or tree to tree) function f : X —
Y; given an input string (or tree) =, what is f(x)?

In this course we will focus primarily on finite state machines which are automata with a
fixed number of states and no additional memory device. A finite state acceptor (FSA)
solves the membership problem while a finite state transducer (FST) solves the transfor-
mation problem.

Finite state machines can have many additional properties such as deterministic vs. non-
deterministic, 1-way vs. 2-way application (for strings), and bottom-up vs. top-down
application (for trees).

22

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

2.4.1 String Acceptors

We will begin by looking at a 1-way, deterministic, finite state string acceptor (1DFSA).
Formally, a 1IDFSA is a mathematical object represented as a five-tuple (£, @, ¢,, 9, F') where:

¥ is the alphabet/set of symbols
(Q is a set of states
¢ € @ is a single initial state that is a member of ()
J is a transition function: ¥ x @ — @
F C @ is a set of final states that is a subset of all the states

9* is a recursive extension of the transition function with domain ¥* x Q:!

6*(\q) = ¢
§*(ow,q) = 6" (w, (0, q))

Given a 1DFSA A and a string s € ¥, if 6*(s, o) € F then we say that A accepts w (alterna-
tively: recognizes,generates). L(A) = {s € ¥* | §*(s,qo) € F'} is the language (stringset)
accepted /recognized/generated by A.

Let’s return to the formal language a"b discussed above. We define the 1DFSA for this
language as follows:

Y ={a,b}
Q=1{1,2,3,4}
qo =1

0 ={((a,1),2),((a,2),2), ((a,3),4), ((a,4),4), ((b;1),4), (0, 2),3), (b, 3), 4), ((b,4), 4) }
F = {3}

While this is the formal definition of the automaton that accepts the a"b language, it is
incredibly opaque. In general, we will represent automata visually as directed graphs.
Each node in the graph represents a unique state in (). The transition function 4 is encoded
with labeled edges. The initial state ¢, is shown with an ingoing arrow and final states F’
are circled twice.

Recall from above that a string s can be decomposed into its initial symbol o and the remaining material
w.

23

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Suppose we wanted to check if the string aaab was in the language. In order to do so, we
see if §*(aaab, 1) = 3:

Now, if we were to do the same check for the string abab, we will see that we end up in
state 4 which is not a final/accepting state:

The processing of abab lands us in state 4 which is not an accepting state. State 4 in this
automaton is what is called a sink state. This is a non-accepting state that, once reached,

24

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

cannot be left. Therefore, we can interpret any edge to a sink-state as the moment that a
string becomes unacceptable. For example, in A above reading a b as the initial symbol
takes us to the sink state since only strings that start with a are in the language. Addition-
ally, reading any symbol after reading an initial string of a’s and one b sends us to the sink
state since we want to end with exactly one b.

24.2 Tree Acceptors

Let’s move now from trees to strings. We will start by looking at a bottom-up, deter-
ministic, finite state tree acceptor (BDFTA). Formally, a BDFTA is a mathematical object
represented as a four-tuple (X,, @, J, F') where

¥, is a ranked alphabet
(Q is a set of states
0 is a transition function: X x Q* — Q
F C @ is a set of final states that is a subset of all the states

As was the case with string acceptors, we recursively extend the transition function to
d*with domain 7 x Q:2

5*(a[N) = 6(a, N)
- =

0" (alty---tn]) = 6(a, 0%(t1) - - 67 (tn))

This time, let’s return to the other formal language a"0" discussed above. There is no
finite state string acceptor that will accept this string language. Instead, we will focus on
a tree language with trees that yield this string language. We define the BDFTA for this
language as follows:

¥ ={a,b,S}

Q = {qa> B> qs}

0 ={((a;A),qa), (0, A); @), ((S, 4a), qs): (S, gagsan), 45)}
F={gs}

A ranked alphabet is simply an alphabet where each symbol has an arity n, indicating
that it must take n arguments (for trees, have n children). The symbols a and b both take 0
arguments since they have no children whereas our S symbol takes either 2 or 3 arguments
because it can either have 2 children a, b or 3 children a, S, b.

2Recall from above that X7 refers to the set of all finite trees.

25

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Arity: Functions vs. Relations

Standardly, a ranked alphabet ¥, uses a function Arity : ¥ — N to determine the
arity Arity(o) = n of each symbol o € 3.

Elements with arity 0 are constants, with arity 1 are unary, with arity 2 are binary,
and so on. In the example above, we see that the element S takes either 2 or 3 ar-
guments. What changes about the alphabet if we consider Arity as a function or
relation?

Unlike string acceptors, graph representations of tree acceptors do not help with inter-
pretability (though see Lambert (2022, chapter 7) for a recent proposal). Instead, we will
rely primarily on the processing function §* to analyse the acceptability of a given tree.

Some trees from the tree language accepted by our BDFTA are below:

S

S S S
A TN T T
a S b a S b a S b

ab
ab a S b a S b
/\ PN
ab a S b
55

The yield of our trees all come from the string language a"b", but we can derive similar
string yields with different tree structures. For example, the following trees Sfaa b b] and
S[S[a a] S[b b]] which are accepted by very different acceptors also yield aabb:

S

aabb
S

SN

S S

/\

aabb

Now, let’s look at what the process function shows for the trees S[a [S[ab]] b] and S[a a
b b]. We'll start with the valid tree.

26

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

6" (SlalS[abl]b]) = 6(S, 0" (a[A]) 07(Sa b])
5,8(a,A) 0% (Sla b])
[

5, qa 07 (Sla b]) 9" (b[A

" (b[A]))
" (b[A]))

o(

=

= §()

= 6(S5,¢a 6(S, 6% (a[A]) 6%(b[A])) 07(b[A]))
= 0(S, ¢a 0(S,0(a, A) 0*(b[A])) 67 (b[A]))
= 0(5,¢a 0(S, qa 67 (b[A])) 0(b[A]))

= 0(S, ¢a 0(S,qa 6(by X)) 07(b[N]))

= 0(5,¢a (S, qa qv) 0" (b[A]))

= 0(5,qa g5 07 (b[N]))

= 0(S, ¢a qs 6(b, X))

= 0(5, 4a qs qv)

ds

Notice, we end in state g5 which we know to be an accepting state. The “bottom-up” aspect
of the acceptor comes from the fact that we assign states to the children of a tree before
assigning states to the mother. Because of this, we don’t know the state for the root node
until the very last step! Before showing the next derivation, we note that if an acceptor is
not defined for a transition §(a, q; - - - ¢,), then the derivations terminates and the tree is
not accepted /recognized/generated. We see this in the derivation of the invalid tree:

S, 0%(a[A]) 0% (a[A]

5 (Slaabb)) =) 5 (]
5,8(a, A) " (a[A]) 6" (b[A]
[

d*(b[A]) 6
) 0" (b[A]))
[

S, qa 07(a[A]) 07(b[A]) 67 (b[A]))

o(

=4

o(

= 0(5, g0 6(a, X) 67 (b[A]) 67 (b[A]))
= 6(S, ¢ ga 0" (b[A]) 07(b[A]))

= 6(S, ¢a 4a 0(by A) 07°([A]))

= 0(S, ¢a 4a qb 0°(D[N]))

= 6(S5, qa qa @5 (b, X))

=4

S, qa Ga 9 qv)
= undefined

We are able to process all of the leaves of the tree, but the resulting string of states is
undefined for our BDFTA. So, even though the two trees have the same “surface form” (i.e.
aabb), their underlying structure is different. The BDFTA is able to differentiate between these
two structures and inform us which one correctly belongs to our language. As linguists,
being able to differentiate between different levels of structure is central to what we do
and therefore shows the utility of different types of acceptors.

27

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

More on Tree Acceptors

What might the definition of a tree acceptor that accepts the tree S[S[a a] S[b b]]
look like? How does it differ from the one we’ve seen?

2.4.3 String Transducers

So far we have looked at two types of acceptors. Recall that acceptors solve the membership
problem: does a given string (or tree) belong to a set? In linguistics, we are sometimes
interested in whether or not a given sequence/structure is a valid member of some set
(e.g. - phonotactics), but we are also interested in how one sequence/structure is turned
into another structure (e.g. - morphophonology, syntactic movement). This latter aspect
of linguistics requires an understanding of the transformation problem for which we use
transducers instead of acceptors.

We return now to strings and will begin our discussion of transducers by looking at a
1-way, deterministic, finite state string transducer (1DFST). Formally, a 1DFST is a math-
ematical object represented as a seven-tuple (3, A, Q, vy, ¢,, 9, F') where:

¥ is the input alphabet/set of symbols
A is the output alphabet/set of symbols
(Q is a set of states
vo € A is the initial string
qo € @ is a single initial state that is a member of @)
0 is a transition function: ¥ x @ — A* x @
F is a final function: @ — A*

If transition (o, q,v,r) € ¢ it means there is a transition from state ¢ to state r reading
symbol o on the input and writing string v on the output. We can refer to the first and
second outputs of delta as ¢; and J, such that d,(c, ¢) = v and d2(0, ¢) = r. These give us
the output and the state transition.

With this in mind, we define a recursive process function 7 : A* x ¥* x @ — A*:
7T(U,)\,Q) =v- F(q)

(v, 0w, q) = m(v - 02(0,q), w, 01 (0,q))

Below we will look at a transducer influenced by the phonological process of post-nasal
voicing found in some natural languages. This process turns voiceless segments immedi-
ately following nasal segments into their voiced counterparts.

28

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

We define the 1DFST for this process as follows:

Y ={a,b,p,m}
A ={a,b,p,m}
Q={1,2}
Vg = A

g =1

6 ={((a,1),(a, 1)), ((a,2), (a, 1)), ((b;1), (b, 1)), (b, 2), (b, 2)),
((p, 1), (p, 1)), ((p,2), (b, 1)), (M, 1), (m, 2)), ((m, 2), (m, 2))}
F= {(17/\)7 (27)‘>}

As was the case with string acceptors, string transducers are also hard to interpret just
by looking at the formal definition. We can similarly use graphs to represent a specific
transducer. The initial state once again has an ingoing arrow, but also includes the initial
string. Generally, the formatting « : y can be read as input x results in output y. The nodes
now encode the states, but also the output of the final function F". The edges now include
information about the transition function ¢. The edge itself encodes the state transition,
while the labels encode the string input/outputs.

Extending This Transducer

1. Extend the definition of this transducer to include other vowels, voiced and
voiceless obstruents, and nasals of your choice.

2. Suppose we wanted to model the process of post-nasal devoicing. What would
change about the definition of the machine?

3. Write a machine for final devoicing using x, x as word boundary symbols.

4. Bonus: Note that this process is very local in the sense that each step is sen-
sitive only to things that are immediately adjacent to it. Are there processes
in natural language that you know of that do not seem to have this property?
How would you account for them with this type of machinery?

29

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Returning to our originally defined machine, let’s take a look at the input form mampa
and see what it maps to:

7 (vo, mampa, go) = T

(

=m(\-d1(m, 1), ampa, d5(m, 1))

(A - m,ampa,2)
=m(A-m-d01(a,2), mpa,ds(a,?2))
=m(A-m-a,mpa,l)

m(A-m-a-8,(m,1),pa,dy(m, 1))
=7m(A-m-a-m,pa,2))
—x(A-m-a-m-0,(p,2),a,6(p,2))
=m(A-m-a-m-b,a,l)
=7m(A-m-a-m-b-d(a,1),\ da,l))

7(A-m-a-m-b-a,\ 1)

=A-m-a-m-b-a-F(1)

:A-m.a.m-b.a.A

Compare this with input mapa, shown below:

7(vo, mapa, q0) = w(A, mapa, 1)
=7(\-d1(m, 1), apa, da(m, 1))
= 7(\-m,apa,?2)
=7m(\-m-d6(a,2),pa,ds(a,2))
=7(A-m-a,pa,l)
=7m(A-m-a-di(p,1),a,d(p,1))
=n7(A-m-a-p,a,l)
=m(A-m-a-p-di(a,1),A d(a,1))
=7(A-m-a-p-a,\1)

:A-m.a.p.a.F(l)
:A-m-a-p-a-A

= mapa

As you can see, the transducer processed the entire string, and returned the input with
no changes. This is because there was no environment for the change to apply. So unlike
acceptors, transducers never really fail in the same fashion. A transducer either completes
a process if it can, or it doesn't.

30

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

String Acceptors as Transducers

We have defined acceptors and transducers as separate objects, but acceptors really
are a subset of transducers. This also means the decision problem can be thought
of as a special instance of the transformation problem. One way to think of this
problem is to consider what you want the output alphabet to be. With that in mind,
do the following:

1. Write a transducer that accepts the language a"b.

2.4.4 Tree Transducers

Tree transducers are useful for many things, including modeling syntactic movement. Un-
fortunately due to time constraints, we will not be covering them in this course; however,
references are listed in the box below for those interested.

Information on Tree Transducers

There is a rich literature in both theoretical computer science and computational
linguistics on various types of tree automata and transducers. A definitive source
for those interested is Tree Automata, Techniques and Applications by Hubert Comon,
Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Loding,
Sophie Tison, Marc Tommasi.

There is a free version of this book available at the following link:
https://jacquema.gitlabpages.inria.fr/files/tata.pdf

2.5 Closing Thoughts and Further Reading

Closing Thoughts

In this lecture, we continued to learn about some of the basic tools commonly employed by
mathematical linguists. First, some elementary ideas in logic were introduced, which give
us the machinery we need to discuss the strong relationship between logic and natural
language across its many modules. Second, some ideas in automata theory such as string
acceptors, string transducers, and tree acceptors were introduced, which helps lay some
of the foundation for our discussion on the use of formal language theory for linguistic
theorizing.

From this point, we will dive in and see how exactly these tools are used by mathematical
linguists to understand the representations and computations that give rise to the human
language faculty. Namely, we will use these tools to understand what inherent complexity
constraints there are on natural language. We will be able to answer questions like:

31

https://jacquema.gitlabpages.inria.fr/files/tata.pdf

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

e What types of patterns do we expect to find in natural language, and what types of
patterns to we expect to be absent?

e Are some ways of mathematically representing these structures more computation-
ally convenient? What are their similarities and differences?

e What can the mathematical properties we are exploring tell us about human (lin-
guistic and non-linguistic) cognition?

While these methods and questions are applicable to all modules of linguistics, in these
lectures, these questions will be tackled with our eyes predominantly on phonology and
syntax.

Further Reading

For those interested in the relationship between subregularity and cognition, see Rogers
and Pullum (2011), Jager and Rogers (2012), Rogers et al. (2013), De Santo and Rawski
(2020), and De Santo and Rawski (2022). For more on this specifically with respect to
phonology, see Chandlee and Heinz (2017) and Heinz (2018), and more generally within
linguistics, see Graf (2022b).

For recent discussion on what exactly the object of interest for theoretical syntax should
be, see Hunter (2019), Stabler (2019), Graf (2022b, section 4).

The complexity of reduplication has long been of interest to computational linguists. Re-
cently, the use of 2-Way Deterministic Finite State String Transducers has shed new
light on these questions. Interested readers should consult Dolatian and Heinz (2019)
and Dolatian and Heinz (2020). Wang and Hunter (2023) is another recent exploration of
the complexity of reduplication in terms of stringsets within the Chomsky-Schutzenberger
Hierarchy.

If you are looking for a book-length treatment on Mathematical Linguistics, there are mul-
tiple options: Partee et al. (1993), Kracht (2003), Kornai (2007), and Keenan and Moss
(2009).

32

Lesson 3
Formal Languages and Automata

3.1 Topics and Goals

In this lecture, we will dive a little deeper into formal language theory and talk about
its place within theoretical linguistics. We will discuss some of the subregular languages
and see how they can be useful in formally characterizing phonological phenomena. We
will also discuss non-regular languages, and see how they can be useful in characterizing
syntactic phenomena. By the end of this lecture, you should be able to describe (i) how
studying computational complexity is useful for studying linguistic patterns (ii) how syn-
tax and phonology differ in terms of their formal properties.

3.2 Formal Language Theory

Consider an alphabet ¥, which is simply a set of symbols. The set £* consists of all possible
strings over the alphabet ¥. We use the boundary symbols x and x to denote the left and
right boundaries of a string, respectively. With these, we can also refer to the set of all
strings enclosed by boundary markers: {xwx | w € £*}. The symbol) is used to denote
the empty string. We also refer to the set of all strings of at least length 1 as X7.

A substring y of a string = (often denoted y < z) is a string for which z = uyv where
u,v € ¥*. Note that either or both of u, v could also be the empty string.

A subsequence y of a string = (often denoted y T x) is just like a substring, only the
elements need not be linearly adjacent to one another. They can be at arbitrary distances
so long as they generally precede one another.

Sub-structures

1. Which unique string is in ¥* but not X*?

2. What are some substrings of the string establishment?

3. What are some strings that the string establishment is a substring of?
4. What are some subsequences of the string establishment?

33

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

A language L is a set of strings. Formally, we define this as L C ¥*.
A grammar G is a formal device that generates or accepts a language L.

It is important to note that there are some languages which cannot be generated or ac-
cepted by any grammar; however, we are not interested in such cases. As linguists, we
care about languages that can be generated with a grammar because language “makes in-
tinite use of finite means” as Wilhelm von Humboldt has famously noted. In our case, the
finite grammar allows us to describe infinite languages.

There are many different ways to formalize grammars that generate/accept languages —in
this lecture, we will discuss Finite State Automata called Finite State Acceptors (FSA’s).

These are machines that, for a given language L, accept strings! that are in L and reject
strings that are not in L. Recall from Lecture 1 that this solves the Membership Problem.

Now that we’ve seen some mathematical foundations, this terminology is very straight-
forward since a language is a set L of strings, and this machine determines whether or not
a string w is a member of the language L. In phonology, this is very useful for reasoning
about phonotactic constraints.

Generally, a Finite State Automaton is a 5-tuple A := (X, Q, I, A, F'), where:
e Y is an alphabet
e () is a finite set of states
e [C (Qis a set of initial states
e A C XY x(@Q x (@ is a transition relation
e [C (is a set of final states

The transition relation A has elements (o, p, ¢) where p,q € @) are states and o € X is an
alphabet symbol. This triple signifies that in the state p if the symbol o is read, the machine
shall transition to state q.

An FSA is said to be deterministic iff there is only one initial state, and there are no two
transitions starting from the same state with the same symbol ending in a different state.

a

(D)
Q=1{1,2,3,4}
4 0

‘ Q=1
0 0 ={((a,1),2),((a,2),2), ((a,3),4), ((a,4),4),
((6,1),4),((b,2),3),((b,3),4),((b,4),4)}
ab F= {3}

'While formal language theory also deals with tree languages, in this course we will mostly deal with
string langauges.

34

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Looking at the graphical representation of our FSA’s, this amounts to saying that there is
no optionality in transitions from any given state. When you are in a state p and you see
a symbol o, you can only end up in one state ¢ — you cannot optionally end up in some
other state r. The FSA for the language a"b from Lecture 1 is shown above.

Determinism vs. Non-determinism

The uniqueness for each symbol-state pair makes the transition relation a function,
and so the transitions in the deterministic case can be written as d(c, p) = ¢.

1. Why is this the case?

Recall that a function is a special type of relation where each input has a unique
output, it cannot have more than one output. Think about all of the elements in
A —if for every (o, p, ¢) transition there is not a (o, p, r) transition where r € Q)
is another state, then there are unique transitions from each state for a given
symbol, making A a function.

2. Bonus: Can you explain why there can be only one initial state for the machine
to be deterministic?

Working with String Acceptors

Let’s look at some string acceptors below and try to answer the following questions:

What languages do they accept?

Are they deterministic or non-deterministic?

What do the transition functions look like?

Bonus: The transitions for these acceptors are not defined using total functions,
since there aren’t transitions for every alphabet symbol at each state. What
would they look like if we added sink states?

Ll e\

5. Draw a machine that accepts the language (CV)"=1.
6. Bonus: How would you change the machine above to accept the language
(CvC)"=1?

35

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Making an Acceptor Non-deterministic

The acceptor above only has two alphabet symbols, a and b. It is deterministic since
there is only one initial state, and there is a unique transition for each symbol for
every state.

1. Suppose we added a transition ((b, 1), 3) — what would change about this ac-
ceptor? Would it still be deterministic? What language would it accept?

Determinizing a Non-deterministic String Acceptor

Any non-deterministic finite state string acceptor is equivalent to a deterministic
finite-state string acceptor. In the NFSA, we pursue multiple paths of single states.
In the equivalent DFSA, we pursue a single path of multiple states.

Suppose we have an NFSA N = (Xy, Qn, In, An, Fiv), we can construct the equiva-
lent DFSA D = (Xp,Qp, 9o, 94, F'p) where

YXp=2n

@p =P(Qn)
G, €EQp=q€Qp|q=1Iy

op=((0 €Xp,qp € Qp),d) | d ={¢" | (0,4,¢") € An,q € ap}
FpCQp=q€Qp|lagNFn#0

In the example above, we added a transition to make the deterministic machine for
a"b non-deterministic. This resulted in a new language: a"b U {b}. Below is the
determinized version of the machine that accepts this language. Note, the definition
above would result in many more states, but those states are never reached, so they
have been removed below. This formulation really highlights how this language is
the union of our first language and one extra string.

Yp ={a,b}
Qo = {{1},{2}, {3}, {4}, {3,4}}
Qo = {1}
op = {((a, {1}),{2}), ((a, {2}),{2}),
((a,{3}),{4}), ((a, {4}),{4}),
((b,{1}),{3,4}), ((b,{2}),{3}),
(

3,4}, (

((6,{3}), {4}), (b, {4}), {4}),
((a, {3,4}), {4}), (b, {3,4}), {4})}

Fp = {{3},{3,4}}

36

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

3.3 The Subregular Languages and Phonology

Now that we’ve seen some examples of formal languages and automata that represent
them, this section will discuss how different types of formal languages have different cor-
responding complexities. We will dive into how the computational machinery required to
generate distinct patterns can vary, and see some more linguistically motivated examples.

3.3.1 The Chomsky-Schiitzenberger Hierarchy

The Chomsky-Schiitzenberger Hierarchy is a hierarchy of formal language classes.>? In
the figure shown below, the darker colors represent the more formally complex classes.
So in this hierarchy, the recursively enumerable languages are the most complex and the
regular are the least complex; however, we will see that it is useful (particularly if you are
a phonologist) to probe further down within the regular region.

Mildly
Context Sensitive

Regular Context-Free

Figure 3.1: Chomsky-Schiitzenberger Hierarchy

So what makes a language regular or context sensitive?

The mathematical machinery used to express these differences spans a few different ar-
eas of mathematics. One can use automata theory, abstract algebra, mathematical logic,
etc. This lecture will focus mainly on automata theory, while later lectures will focus on
mathematical logic, specifically finite model theory.

Viewing things from an automata theoretic lens, each of these language classes has corre-
sponding type of machine that generates or recognizes languages from that class. Observe
the table below:

2This is not the only hierarchy of interest in formal language theory. This hierarchy represents stringsets,
while there are other hierarchies that represent sets of pairs of (input,output) mappings for transformations.
Such a hierarchy draws computational distinctions between classes of mappings as opposed to classes of
languages.

By language classes here, all that is really meant is sets of languages. For example, the class of regular
languages is just the set of all languages meeting the property of being regular.

37

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Langage Class Machine

Regular Finite State Automaton
Context-Free Pushdown Automaton
Context Sensitive Linear Bounded Automaton

Recursively Enumerable Turing Machine or the A-calculus

Pushdown Automata and Context-Free Languages

A Pushdown Automaton is a type of automaton that makes use of what is called a
stack, which allows the automaton to keep a memory of arbitrarily many steps.

A stack is a data structure which is a collection of elements and two operations push
(which adds an element) and pop (which removes the most recently added). A
Pushdown Automaton for the language a"b" is shown below:

a,e/a b,a/e

The intuition is that for a given string, the stack keeps track of exactly how many a’s
the automaton has seen, and once it sees a b, it unloads all of those a’s, and the string
will only be accepted if there are exactly that many b’s remaining in the string.

Membership and Transformation

As we've seen, both languages and transformations can be used to formally character-
ize natural linguistic patterns, but let’s look more closely at a linguistic example.

One can view vowel harmony as either (i) a well-formedness constraint on words,
where ill-formed words violate harmony and well-formed words do not, or (ii) a
process which turns UR’s into SR’s that satisfy harmony.

Well-formedness Constraint: Transformation:
Good forms: ev-ler, ev-ler-e, ev-l1Ar — ev-ler
at-lar, at-lar-a, . .. ev-lAr-A — ev-ler-e
at-lAr — at-lar
Bad forms: *ev-lar, *ev-lar-a, at-IAT-A — at-lar-a
*at-ler, *at-ler-e, . ..

On the left, vowel harmony is a restriction on allowed/disallowed words within a
language (Membership Problem). On the right, vowel harmony is an input-output
mapping where a UR is mapped to an SR (Transformation Problem).

38

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

3.3.2 Subregularity and Phonology

Consider the standard SPE Rewrite Rules of the form A — B/C__D, which is interpreted
as ‘An A is rewritten as a B in between a C and a D’, where A, B,C, D are all regular
stringsets.

A well-established result of computational phonology is that these rewrite rules, when
applied in a unidirectional, simultaneous fashion, represent the regular relations. With
this information, one could posit that the stringsets and mappings that are able to describe
phonological patterns are properly regular. This correctly rules out pathologies like the
Midpoint Pathology (a type of mapping which targets the middle of the input string) and
Majority Rules Harmony (a type of mapping in which the entire output string harmonizes
with whichever feature occurs more in the input string), which are both non-regular.

However, regularity also seems too strong for phonology since it has the capability to
produce different types of unattested patterns. A logically possible regular language could
enforce that the first and last segments of every word agree in roundness, which is called
tirst-last harmony. Another possible regular language could enforce that words can only
contain an even amount of high vowels and if they contain an odd number of high vowels
they are illicit. Patterns like these are not found in natural language.

Any decent scientific theory should be sufficiently restrictive and expressive. Of course we
want a theory of phonology that has the ability to straightforwardly capture the wide land-
scape of attested phenomena, but we don’t want a theory so strong that it easily captures
unattested phenomena. What sorts of advantages do the mathematical tools described
here have for building such a theory?

There is beauty in using abstraction to study the computational properties of these pat-
terns themselves because it allows us to quantify unambiguously what it means for one
pattern to be “more complex” than another. This can ultimately shed light on why we
have a tendency to see patterns of this type and not patterns of that type. Thus, our under-
standing of the relationship between linguistic typology and learnability ends up falling
out quite naturally looking at these patterns from a computational perspective.

This leads us to the Subregular Hypothesis, which posits that all patterns in natural lan-
guage phonology can be described by stringsets and mappings that are Subregular. Under
this hypothesis, phonology does not make use of the full computational power of regu-
larity, it can be naturally expressed with much simpler types of stringsets and mappings.
Below, the Subregualar Hierarchy is shown — note that this entire hierarchy is situated
properly within the regular region of the Chomsky-Schiitzenberger Hierarchy, meaning
that these language classes are less formally complex than the regular languages.

A glossary of all of the terms in this hierarchy is given below, and the remainder of this
section will expand upon some of these classes through some phonologically motivated
examples. In a later lecture when we discuss finite model theory, we will go into more de-
tail about how the levels of logical power and relations used give rise to different language
classes.

39

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

+1 <
REG MSO
4/ S
LTT _ FO
‘ TSL
LT PT P
| |
SL \ / SP CNL
FIN
Figure 3.2: The Subregular Hierarchy
Relations: Language Classes:
+1 | Immediate Successor Relation FIN | Finite
< | General Precedence Relation SL | Strictly Local

SP | Strictly Piecewise
TSL | Tier-Based Strictly Local

Logics: LT | Locally Testable
MSO | Monadic Second Order Logic PT | Piecewise Testable
FO | First Order Logic LTT | Locally Threshold Testable
P | Propositional Logic SF | Star-Free
CNL | Conjunction of Negative Literals REG | Regular

3.3.3 Finite Languages
Simply, the Finite languages are those that contain only finitely many strings.
Or more formally, F'IN = {L | forsomen € N, |L| = n}.

There is an automata characterization of the finite languages as well: deterministic acyclic
finite-state acceptor (DAFSA; Daciuk et al., 2000). We already know what makes a finite
state machine deterministic, but what does it mean to be acylic? It simply means that once
you exit from a state in the machine, there is no way to return to that state.* More formally,
a DAFSA is a 1IDFSA where the transition function 4 is acylic — there is no string w and state
g such that §*(w, g) = ¢. In other words, there is no path in the machine that starts and ends
in the same state. These types of structures have been used in computational linguistics
and natural language processing to efficiently represent dictionaries (which by their very
nature contain only a finite set of strings).

41t is impossible to have a sink state/total function and be acyclic. One way around this is to define the
transition and process functions to return false when a transition is undefined. We ignore this for now.

40

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

As an example of a finite language, consider the language containing only the four strings
L = {a,ab, abb, abba}. An FSA that recognizes this language is shown below:

Finite and Infinite Languages

For the acceptor above, suppose instead of the b transitions from ¢; to ¢, and ¢ to g3,
we had a loop at ¢; with a b. This change is reflected in the FSA below.

1. Does this FSA recognize all of the forms in L?
2. Does this FSA recognize the same language?
3. If not, is the language that this FSA recognizes finite? Why or why not?

3.3.4 Strictly Local Languages

The Strictly Local languages are those that can be recognized by scanning a fixed k-length
window of a given string and checking whether the k-length substring in each window is
allowed in the language. This is schematized below for a string z = x; ...z, and k = 2:

$1 o || X3 |... xn

X1
T1X2
T2l3

Ty X

We formalize the k-length windows as the k-factors of a string s, where k-factor is defined
as follows:

factory(s) = { Veludsful =k} ifk<|s|
ReROTk = {s} otherwise

This definition is then further extended such that the domain is not a single string but
instead a set of strings S:

41

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

factory(S) = U factor(s)
ses

We can now define an SL; grammar G C factory({xwx | w € X*}) as a set of illicit
k-factors. A word w satisfies an SL; grammar G if and only if factory(w) NG = 0. If
the intersection of the k-factors and the grammar is empty this means there are no illicit
substrings in the word!

Finally, we can define the language £ recognized by a grammar G as:

L(G) = {w | factory(w) NG = 0}

This just says the strings recognized by a grammar are those that contain none of the illicit
substrings found in our grammar. We can therefore talk about the set of all strictly local
languages SLj, as all the sets of strings S which are the language £ of some strictly local
grammar G for some k£ > 1:

SLry={S|G C factor,({xwx | w e X*}),L(G) = S}

Let’s now consider an example from natural language phonology. Intervocalic voicing is a
phenomenon found in various natural languages. Recall from our discussion earlier that
many phenomena can be viewed as either a transformation or a well-formedness condi-
tion. We could think about this phenomena as the result of a rule such as [— son] —
[+ voi]/[+ syl]__[+ syl] or OT constraint ranking "VIV >> IDENT-Voicg, but since we
are talking about stringsets, we will view intervocalic voicing as all the sets of strings that
do not contain a voiceless consonant in between two vowels.

We will simplify our analysis using the alphabet ¥ = {V, T, D} where V' stands for all vow-
els, T stands for all voiceless consonants, and D stands for all voiced consonants. Consider
the language £ which accepts all and only strings in ¥* which do not contain the substring
VTV. This requires a window of size k& = 3. All of the possible length 3 substrings in
{xX¥*x } are shown in Table 3.1.

xVV VVV TVV DVV VVk
xVT VVT TVT DVT VT
xVD VVD TVD DVD VDx
xTV | 7TV DVT TVx
xTT VTIT TTT DIT TTx
xTD VTD TTD DTD TDx
xDV VDV TDV DDV DV
xDT VDI TDT DDT DT
xDD VDD TDD DDD DDx

Table 3.1: All possible substrings of length 3 in { x¥*x }.

42

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

since we know that substrings like VI'V and DVTV D are disallowed since a voiceless
segment occurs between two vowels, but substrings like V. DV and TV DVT are allowed
since voiced segments occur between two vowels.

Intervocalic Voicing Acceptor

There is a relationship between the k-window size and the number of states neces-
sary to represent a given pattern.

1. If a pattern is n-local, what is the minimum number of states required in the
corresponding finite state machine?
2. Write an acceptor for the intervocalic voicing language.

3.3.5 Strictly Piecewise Languages

The Strictly Piecewise languages are similar to the Strictly Local languages, but differ in
that the factors are over subsequences as opposed to substrings. Therefore, we can write
a definition for k-subsequences and the Strictly Piecewise grammars and languages fall
directly out of this new definition.

S {u|uCsful =k} ifk <8
subseqk(S) = { {s} otherwise

Recall that subsequences don’t care about intervening material within the string. For ex-
ample, we can talk about substring constraints like the string contains an a directly followed
by a b. On the other hand, we can also say something like the string contains an a that has
a b somewhere in the string after it. This latter description would be a subsequence con-
straint. The two machines in Figure 3.3 below highlight this difference.

b,c ab,c b,c a,c a,b,c

a b a b
start start

Figure 3.3: Left: machine recognizing “there must be a b directly following an a some-
where in the string”; Right: machine recognizing “there must a b somewhere in the string
following an a.

The machines are quite similar! The crucial difference is the loop in state 2. This highlights
the fact that b can be arbitrarily far away from « in the string, it just has to appear at some
point. If you have studied phonology, you may be thinking of certain patterns that can
seemingly have arbitrarily long dependencies. We can use the idea of subsequences to
study and analyze this types of patterns, which we will do below.

43

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Subsequences

Samala is a language native to the California area. It has a pattern of symmetrical con-
sonant harmony where words cannot contain both [s] and [[]. Words like [posokoso|
and [pofokofo] are well formed, while words like *[posokofo] and *[pofokoso] are
ill-formed.

1. Write an acceptor that will recognize “Samala” using the alphabet ¥ =

{s,[,C,V'}.

Sarcee is an Athapaskan language with an asymmetrical consonant harmony pattern.
In Sarcee, [s] may follow [[], but [J] may not follow [s]. So words like [posokoso]
and [pofokofo], and [pofokoso] are all well-formed, but words like *[posokofo] are
ill-formed.

2. Write an acceptor that will recognize “Sarcee” using the alphabet ¥ =
{s,],C,V}.

3.3.6 Tier-based Strictly Local Languages

The last class of stringsets we will discuss is the Tier-based Strictly Local languages (TSL).
TSL imported the idea of tiers from autosegmental phonology into the formal language
theory domain. The only difference between TSL and SL languages is the fact that TSL only
cares about some relevant subset of alphabet symbols, which are projected on a given tier.

We can define the TSL languages formally in the following way:

A language L is TSL-k if there exists a K € N and a tier ' C ¥ such that all strings in L are
SL-k when restricted to only the symbols in 7'.

For example, we might define an erasing function Er that takes a string as its input and
“erases” all of the non-tier symbols: Er(oy---0,) = uy---u, where u; = o;iff 0 € T,
otherwise u; = \.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S= FCCCCcCocCocCCCCF
Figure 3.4: Tier Construction

There are many types of vowel harmony across the world’s languages, but lets look at an
abstract pattern of front-back harmony over the alphabet > = { F, B, C'} where F'is a front
vowel, B is a back vowel, and C' is a consonant. Valid strings in the language are ones that
contain no mismatch of F’s and B’s. So all vowels have to be “front” or all vowels have to
be “back” (Notice in our description of this pattern, the consonants don’t matter at all!)
So we can analyze this by saying there is a vowel tier 7" = { F, B}.

44

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

What we really care about is the tier string of vowels. This language is TSL-2 because we
only need to check two adjacent symbols on the tier. But if we were to look at the actual
strings (before we erased the consonants) there’s no guarantee that such a £ would exist.
For example, FCCCCCCCCCCF has many consonants in a row, but if we were to apply
the erasing function, the tier string is just F'F', and so this long distance pattern is very
local in a relative sense.

3.4 The Non-regular Languages and Syntax

The previous section showed why the regular languages/mappings are too strong for
phonology. How do they fare for syntax?

Recall that the Regular languages are those that can be recognized by an FSA. Thus, if
syntax were Regular, that would mean that we could capture syntax with an FSA.

Recall our old friend a™b", which we said is Context-Free and thus requires a Pushdown
Automaton to recognize it. This is due to the fact that in order to know how many b’s occur
in the string, you must have kept track of exactly how many a’s were encountered. This
crucially cannot be done with an FSA because there are only finitely many states.

Consider the sentences below.
1. John buys eggs.
. Mary will bake a cake.

2

3. If John buys eggs, then Mary will bake a cake.

4. If John buys either eggs or flour, then Mary will bake a cake.
5

. If John buys either eggs with neither scratches nor cracks or flour, then Mary will
bake a cake.

If we attempt to construct an FSA for sentence 3, it will look something like this:

h b

@ cake @ a @ bake

eggs

)

then

Mary

&)

will

In sentence 4, we see that within the dependency between ‘if” and ‘then’, we can have
another dependency between ‘either” and ‘or’. Adjusting our FSA would mean adding
more states and transitions between states 1 and 4 for the added material between the
dependency.

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

In sentence 5, there is another dependency between ‘neither” and ‘nor” within the ‘either’-
‘or’ dependency. This results in adding more states and transitions between the states we
already needed to add to account for sentence 4.

We have all spoken enough human language to know that this can go on ad infinitum.
Namely, every extra embedding added requires more states and more transitions between
them and this can be done indefinitely. This requires more expressive power than an FSA
has to offer. This is the same reason that there is no FSA that can recognize a"b" — FSA's
have a bounded memory.

Rather than trying to draw up a Pushdown Automaton to handle fragments of English,
we can use a convenient system of rewrite rules to represent Context-Free languages.

A Rewrite Grammar or Phrase Structure Grammar is a tuple (7', N, S, R) where:
e T'is a set of terminal symbols
e N is a set of non-terminal symbols
e S is a non-terminal starting symbol

e Risa set of rewrite rules where A - Band A,B € (NUT)*

Specifically, a Context-Free Grammar is a Phrase Structure Grammar such that for every
rewriterule A — B € R, itis the case that A € N is a single non-terminal and B € (NUT)*
is a sequence of non-terminals or a single terminal.

Observe the CFG below for a small fragment of English where parentheses indicate op-
tionality of a given non-terminal and the Kleene star * continues to indicate iterativity:

e S NPVP
NP — D (Adj)* N
D — the |a

N — man | cake

VP —V (DP)

V — eats

Adj — big | small

46

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

The derivation for an example sentence “The man eats a big cake” using this CFG is shown
below:

S
/\
NP VP
/\ /\
D N \%4 NP
| | | I
the man eats D Adj N

Context-Free Grammars

1. What are some other sentences that the Context-Free Grammar defined above
can generate?

2. In the CFG defined above, note how there is only one verb eats which can be
either transitive (as in eat the cake) and intransitive (as in the man eats). This is
encoded in our CFG by the V' P rewrite rule having an optional DP.

Suppose we added to our list of non-terminals verbs that are either only tran-
sitive (throws, brings, etc.) or only intransitive (dies, jumps, etc.). How would
this change our set of rewrite rules?

3. Let’s say we wanted to add PP adjunction to account for sentences like The man
with purple hair. How would this change our set of rewrite rules?

4. Bonus: Suppose we changed the form of our rewrite rules from A — B where
both A,B € (NUT)*to A — aBor A — awhere A,B € N and a € T. What
would this change about the nature of our grammar? Does it become more or
less expressive?

Not only has the view of syntax evolved considerably since the introduction of CFG’s,
but there are also some syntactic phenomena that appear require even more expressive
power.> Cross-serial dependencies in Swiss German have been shown to require more
expressive power than Context-Free has to offer. This has led to the introduction and
development of formalisms such as Tree Adjoining Grammars (TAG’s) and Minimalist
Grammars (MG’s), which hover in this mildly-context sensitive region.

>The discussion here revolves around assuming that trees are string generators and under this assump-
tion the argumentation holds, but see Graf (2022b) for a very interesting discussion on how rethinking
certain representational assumptions, syntax can appear to be regular.

47

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Type n grammars

The Chomsky hierarchy was originally formulated in terms of restrictions on rewrite
grammars. Type 0 grammars are completely unrestricted and correspond to the Re-
cursively Enumerable languages. Type 1 grammars correspond to the Context-Sensitive
languages which require the right side of the rule to be greater than or equal to in
size of the left side of the rule. Type 2 grammars correspond to the Context-Free as
described above. Type 3 grammars correspond to the Regular languages and restrict
the rewrite rules to be of the form N — 7' | T'N. Example are shown below.

CONTEXT-SENSITIVE: a"b"c"

S

a A b c

S — abc|aAbe
Ab — bA

b A
Ac — Bbce
B b
a a
CoNTEXT-FREE: a™b"
S
S — aSh
S — ab ¢ o b
a b
ReGULAR: a™b™
S
S — aS a 5]
S — bB
S — alb

48

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Minimalist Grammars

Minimalist Grammars (MG’s) are a mathematical formalization of Chomsky’s Min-
imalism, which have become very widely used among computational syntacticians.
For reasons of time and space, we will not be covering MG'’s in this course.

While this list is not exhaustive, the interested reader can get more acquainted with
them through the following papers: Stabler (1997), Michaelis (2001),Kobele (2006),
Kobele et al. (2007), Salvati (2011), Graf (2012).

3.5 Closing Thoughts and Further Reading

Closing Thoughts

In this lecture, we used some of the machinery introduced in lectures 1 and 2 to investigate
some linguistic phenomena. We began to look at some language classes within the sub-
regular hierarchy from an automata-theoretic perspective. Some examples of finite state
acceptors were shown for different language classes and how they can describe things like
tonal generalizations, different types of consonant and harmony, intervocalic voicing, etc.
It was also discussed how certain formal devices fail to capture syntactic generalizations
and what types of expressive power is required.

From this point, we will use logic, one of our remaining mathematical tools to see how we
can understand generalizations in phonology and syntax from a new perspective. While
the tools that we will use to investigate will be different, we find that there is remarkable
similarity in how unified all of the underlying properties are.

Further Reading

For some texts covering the topics of formal language theory and automata theory more
generally, see Hopcroft and Ullman (1969); Moll et al. (1988); Sipser (1996).

TSL grammars were first introduced by Heinz et al. (2011). For some extensions of this
class, see Graf and Mayer (2018) and De Santo and Graf (2019). To see how tiers can be
used in defining transformations, see Andersson et al. (2019) and Burness et al. (2021).

While we looked at the relationship between well-formedness and locality mostly with
respect to strings, to see how it can be extended to non-linear structures for studying tonal
phenomena, see Jardine (2017, 2019).

We briefly mentioned the dual nature of phonological patterns as both transformations
and well-formedness conditions. While not discussed here, transformations require trans-
ducers instead of acceptors. Because of this, the purely automata perspective makes it hard
to compare the complexity across the two types of machines. If we instead take an alge-
braic approach, a unified analysis is possible. Lambert (2022) does so, and also extends
the subregular hierarchy into what he calls a “subregular spiral”.

49

Lesson 4

Model Theory and Logic

4.1 Topics and Goals

In the previous lecture, we looked at formal language theory from the perspective of au-
tomata. In this lecture, we will take an alternative approach that uses model theory, which
is related to mathematical logic, as a way of characterizing language classes. First, we will
discuss what a “model” is in terms of model theory and how this idea can be used to
describe various types of linguistic structure. Our focus will primarily be on strings, but
will show that the model-theoretic approach can be extended to structures more broadly
defined.

After introducing models, we will discuss first-order logic and show the interplay between
representation and logical language for describing different subregular classes. Here, we
will focus primarily on the strictly local, strictly piecewise, and tier-based strictly local
languages.

To conclude, we will discuss the idea of interpretations in logic and model theory, and how
these can be used to describe phonological (and other types of linguistic) transformations.
Additionally, we will discuss how interpretations can be used to turn one type of structure
into another type of structure which is useful when thinking across different linguistic
modules or doing theory comparison within modules.

By the end of the lecture, you should be able to (i) explain how model theory is useful for
studying natural language phenomena, (ii) define a model signature and build a structure,
(iii) explain how logical constraints relate to formal language theory, and (iv) interpret
one structure in terms of another structure.

4,2 Models

Model theory is a subfield of mathematical logic interested in whether or not a specified
structure (model) satisfies a given constraint. Its history can be traced back to work in phi-
losophy and logic in the 1800’s, but it wasn’t until the 1950’s when Alfred Tarski claimed

50

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

that there was a new field of inquiry: the theory of models (Tarski, 1954).! In this sense,
it is still a relatively young field.

The use of model theory for studying natural language has an even younger history. Richard
Montague gave model theory a home within the study of natural language semantics
(Montague, 1974), and it continues to be a fruitful area of inquiry to this day. Decades
later, Jim Rogers used model theory to analyze the complexity of natural language syntax
as it is conceived within a GB framework (Rogers, 1998), showing that semantics was not
the only subfield of linguistic theory that could benefit from using model theory for formal
analysis. Potts and Pullum (2002) brought model theory into the domain of phonology,
thus showing that structure, form, and meaning (i.e. - The “inverted T/Y model” of the
grammar) can all be fruitfully studied with model theory.

Inverted T/Y model

It is assumed among many generative linguists that the architecture of natural lan-
guage follows an inverted-T/Y model where Narrow Syntax (NS) computes the
form underlying an utterance and it splits off into Phonetic Form (PF) to be pro-
nounced by Articulatory-Perceptual system and Logical Form (LF) to be interpreted
by the Conceptual-Intentional system.

NS

PF LF

Roughly, the branch from NS to PF consists of the morphological, phonological,
and phonetic modules, whereas the branch from NS to LF consists of the semantic
module.

Later, when we discuss transformations between linguistic structures using some of our
tools from mathematical logic, we will see the robustness these tools have when assuming
this modular, feed-forward architecture underlying natural language.

Before we formally define what a model is, let’s do a short exercise to think about what
parts of a given structure we care about. What is the difference between the strings in the
following three pairs?

aaa & aaaa
darp & drap
darp & tarp

For a “short” history of model theory, see Hodges (2018)

51

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

In the first pair, there is variation between the number of elements in the string. In the second
pair, there is variation between the order of elements in the string. In the third pair, there is
variation between the properties of elements in the string.

The term model refers to a structure in some model signature. A model signature is a col-
lection of functions, relations, and constants that are used to describe structures.? Model
signatures are often denoted with X.> With this in mind, a X-structure A (equivalently a
model A) contains a set called the domain, as well as denotations for each symbol in 3.
Below is how we denote functions, relations, and constants:

A denotation for a constant is a single element of the domain of A.
A denotation for a function symbol of arity k is a k-ary function on the domain of the A.
A denotation for a relation symbol of arity k is a k-ary relation on the domain of the A.

Different model signatures are useful for describing different types of linguistic phenom-
ena. We will begin by looking at strings over the relational model signature (<1, {R, | 0 €
¥}). This signature defines strings using the “successor” relation (<1). It is standard to
define the domain D as a subset of the natural numbers N. Given this assumption, we can
define the successor function as follows.

4= (i,i+1)e Dx D

The other relations in our signature are R, where these are unary relations for ever symbol
in our alphabet. We can define strings using this model signature by labeling the properties
of elements of the domain with our R,’s and order the elements of the domain with <. With
the domain itself we get the number of elements. Think back to our thought exercise from
above. These are exactly the parts of a string we are interested in.

Suppose we wanted to define string aaa. What would our model look like? Let’s have our
alphabet of symbols be ¥ = {a,d,t,r,p}. Figure 4.1 shows what it would look like both
formally (left) as well as graphically (right). Graph representations allow us to easily
visualize strings and other structures we are interested in, but remember that the mathe-
matical object itself is the domain and denotations.

(D = {0,1,2}, a a a
<1 ={(0,1),(1,2)}, < <
a= {07172}7 o ° °
d={bt={}hLr={p={}

Figure 4.1: Y-structure for string aaa.

2A constant is a symbol in our logic that is always given the same semantic interpretation.
3Sorry if this is confusing due to X also being used as the symbol for the ‘alphabet’ as well.

52

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Defining Strings

Now that we have defined the structure of a string using model theory. Let’s prac-
tice with the other strings from above. Using the model signature that has been
given, write out the full domain and denotations for all strings, but also draw them
graphically.

1. aaaa
2. darp
3. drap
4. tarp

What do you notice about the difference in terms of number of elements, properties of
elements, and order of elements?

The model signature above is a relational model because it only contains relations. But
there is no need to restrict the signature to only one type of thing. We can freely mix
functions and relations. Another model signature that is sometimes used for talking about
strings is ({p(),s()},{R, | ¢ € ¥}). This signature replaces the successor relation with
both the successor and predecessor functions. As was the case with the above signature,
properties of elements of the domain and the number of elements are defined the same way,
but now we impose an order through functions instead of a single relation. Lets see what
this looks like once again using the string aaa and the alphabet ¥ = {a,d, t,r,p}. Figure
4.2 shows this.

(D ={0,1,2}

P() = p(0) =0;p(1) =0;p(2) =1

s() = s(0) =1;s(1) = 2;8(2) = 2 a s a < a
Somowos
d={} - .
t={}
r={}
p={}

Figure 4.2: A different >-structure for string aaa.

We have focused on strings, but trees are also easily definable with the model theory ap-
proach (see block below!). But it’s not limited to just strings and trees. What'’s nice about
model-theoretic representations is that they are both rigid in that they are mathematically
well-defined objects, but flexible in the sense that many different types of linguistic objects
can be defined this way. Really, your imagination is the limit!

53

V-NYI #9: Intro to MathLing Czarnecki & Nelson

For example, phonologists working with model theory have used it to describe not only
segmental strings as we have looked at so far, but also strings of feature values, autoseg-
mental representations, and syllable trees. Some have even used it to look at phonological
structures in signed languages as well as gestural representations used in theories like
Articulatory Phonology.

Model-Theoretic Representations of Trees

We have seen both relational and functional models that formalize our notion
strings. We can do exactly the same for trees by using different types of relations
and functions. Here, we will briefly introduce relational models for trees.

Consider an alphabet ¥ and a model (D; <*, <, {R, | 0 € ¥}) where D C Nis
a set of nodes, <1*(x,y) is the (binary) general dominance relation, < (z,y) is the
(binary) sisterhood relation, and o;(z) is a (unary) relation for each 0; € X. An
example is given below, where the left side is the tree itself and the right side is a
model representation of the tree:

a
=
C
/\
d e

The signature uses the general dominance relation <*, but for simplicity of presen-
tation only those nodes which follow immediate dominance are shown on the tree
models. The immediate domination relation < can be defined in the following way:

def

Az, y) =x < yANr £ yAVz[(x <"z A2 <" y) = (x =2V 2z =y)]]
In this tree, the relations are configured in the following way:

< ={(0,1),(0,2),(0,3),(0,4),(2,3),(2,4)}
<= {(172)7(374)}
o= {0},b={1},c= {2}, d = {3},e = {4}

54

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Questions about Tree Structures

1. Describe the properties of the general dominance relation. More specifically,
is it reflexive, transitive, symmetric, etc.? What about the sisterhood relation?

2. Informally, how would you define the C-command relation C(z, y) using the
relations we have at hand?

3. What are some other relations you could imagine that can be defined in terms
of <* and < that could be useful for formalizing syntactic operations?

4. Using an alphabet X of your choice, define some tree structures that corre-
spond to valid syntactic trees for English sentences.

4.3 First-Order Logic

The model-theoretic representations we defined above are only one piece of the puzzle.
Once we have the representations, we also need a way of talking about them. Our way of
talking about these objects will be with mathematical logic. Specifically, we will use first-
order logic (and fragments thereof) because it provides variables which in turn allow us
to target specific elements within the domain.* An informal introduction is given below.

Recall our discussion of Propositional Logic from Lectures 1 and 2. We discussed the
standard boolean connective AND (A), OR (V), NOT (—), IF (—), and IFF («+»). These
were used to reason about propositions and different logical truths emerged depending on
how we defined the assignment/interpretation function :.

First-order logic extends Propositional Logic in the following ways. First, we add first-
order variables which range over elements of a given domain. Second, we add quan-
tification which allow us to infer properties that range over the domain. There are two
quantifiers that are used: the universal quantifier (V) and the existential quantifier (3).
The universal quantifier is often read as “for all” and allows us to check if a property is
true for all elements in the domain. The existential quantifier is often read as “there exists”
and allows us to check if a property is true for at least one element in the domain. Third, we
add the concept of equality. This allows us to check the equality of two variables. Table
4.1 lists all of the symbols (excluding things like parentheses and commas) that we are
allowed to use in first-order logic.

We define a logical language in first-order logic by combining the symbols available to
us (Table 4.1) with a specific model signature Y. From this, we define a >-formula as any
logical formula where all the non-logical symbols are drawn from ¥. In other words, it is
a formula that uses the relations and functions from the specified model signature .

“First-order logic is often called predicate logic because it reasons over properties of the domain and prop-
erties are determined based on functions and relations (i.e. predicates).

55

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Name Meaning
x,y,z variables Elements of the domain
R,...R,, relations Order/Properties of the domain
F...F,, functions Order/Properties of the domain
C4...C,, constants
A conjunction “And”
v disjunction “Or”
- negation “Not”
— implication “If...then”
“ bi-direction “Same”
= existential quantifier “There Exists”
v universal quantifier ~ “For All”

equality “Equals”

Table 4.1: Symbols and their meaning in First-Order Logic

Suppose we have the following model signature: ¥ = (p(), s(), Rc, Rv, R, Rx). De-
termine which of the following formula are >-formula.

1. V(z) A x(
2. G(z) A x(
3. G(z) A x(A(z))

n n
—~~
SRS
~
~— —

The model signature above is used to define strings of C’s and V'’s (which stand for
consonants and vowels). Turn the following statements into their corresponding
Y-formula.

4. If an element is a vowel, then it is followed by a consonant.
5. An element is both a vowel and preceded by a consonant.
6. An element is at the beginning of a word if and only if it is a consonant.

A Y-formula like Qz(¢) (where () is a quantifier, = a variable, and ¢ a well-formed formula)
is called a ¥-sentence given that ¢ contains no variables other than z. We say that ¢ is in
the scope of Qx and any instance of x in ¢ are bound by it. Any variables in ¢ other than
x are said to be free. The full definition of a »-sentence is any ¥-formula with no free
variables.

Why do we care about X-sentences and not just X-formula? X-Sentences are interpreted
without needing to assign any of the variable to a specific element of the domain. On the
other hand, ¥-formula require explicit assignment of variables to elements of the domain
in order to be interpreted. A ¥-formula is satisfiable if it evaluates to true under some
assignment of the variables in the domain. A ¥-formula is valid if it evaluates to true

56

V-NYI #9: Intro to MathLing Czarnecki & Nelson

under every assignment of the variables in the domain. Notice, this corresponds directly
to existential (some) and universal (every) quantification. So we can turn any X-formula
into a X-sentence depending on if we want a given property to hold for a specific element
in the domain or every element in the domain.

Recall above, where we defined a ¥-structure as any structure built from a model signature
2. Suppose we have a X-structure A and a -sentence ¢. If ¢ evaluates to true then we
write A F ¢ to mean A satisfies/models ¢. If ¢ evaluates to false then we write A ¥ ¢ and
say A does not satisfy/model ¢. From this definition of satisfiability, we can ask the following
three questions:

1. For a fixed X-structure A, which Y-sentences does it satisfy?
¢ Theory(A) = {¢: AFE ¢}

2. For a fixed ¥-sentence ¢, which ¥-structures satisfy it?
¢ Spectrum(¢) = {A: AE ¢}

3. Given a set of ¥-sentences 7', what are the X-structures that satisfy all ¥-sentences
inT?

¢ Model(T) & {A:Vp e T[AF ¢]}

¥-Formula/>-Sentences and Satisfiability

Suppose we have the following model signature: ¥ = (p(), s(), R¢, Rv, Ry, Rx). De-
termine which of the following formula are ¥-formula and which are >-sentences.

L V(z) A x(s())
2. 3x(V(x)) A x(s(z))
3. Fx(V(x) A x(s()))

Given the X-sentence ¢ = Jz(V(z) A x(s(x))), which of the following structures
model/satisfy ¢?
p P P p
X s C s Vv s A s X
p P 1Y P

Bonus: Write a set of 3-sentences 7" such that 7" models all and only the strings in
the language (C'V)™*.

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

4.4 Model-theoretic Formal Language Theory

Recall the Subregular Hierarchy from Lecture 1 and 2, repeated below:

+1 <
REG MSO
~_sF
LTT _ FO
‘ TSL
LT PT P
| |
SL -~ SP CNL
FIN

Figure 4.3: The Subregular Hierarchy; +1 refers to constraints defined using immediate
successor, whereas < referes to constraints defined using general precedence; MSO refers
to Monadic Second Order Logic, FO refers to First Order Logic, P refers to Propositional
Logic, and CNL refers to Conjunction of Negative Literals; Combinations of logic and
representation result in different language classes (explained in more detail in Lecture 3).

4.4.1 Strictly Local Languages

Remember that in Lecture 3 we discussed the Strictly Local languages and defined a lan-
guage to describe intervocalic voicing. We showed an automata-theoretic characterization
of this phenomenon by constructing a finite state acceptor which accepted all and only
such strings. Here however, we will be seeing how a certain restriction on Propositional
Logic will give a convenient model-theoretic characterization.

In the definition of Propositional Logic, atoms are propositions P,), R, . . . which are state-
ments that are either true or false. The term literal simply means any atomic formula or
its negation: so if P is an atom, then both P and —P are called literals. The former is called
a positive literal and the latter is caleld a negative literal. If we take Propositional Logic
as we’ve defined it previously and restrict it so that the only connectives allowed are con-
junction (A) and negation (—), we get the logic called Conjunction of Negative Literals
(CNL). Note though that the negation is restricted in that it may only be used to negate a
literal P (see Exercise 1 on the following page).

Interestingly, note that the definition of a X-sentence is a ¥-formula with no free variables,
which ultimately describes a structure through a statement that is either true or false. This
is exactly what a proposition is. So in a sense, the literals that we use in Propositional Logic
and CNL are just Y-sentences of First-Order Logic interpreted as individual units.

58

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Using the successor relation <i(x, y) in combination with Conjunction of Negative Literals
defines languages by simply stating all of the k-length (or less) combinations that are
disallowed from occurring in any string in the language. Thus, a Strictly Local language
is one that can be specified by statements of the following form:

(X)) A (X)) AL (X),

where n € N and each Xi<;<, is a string of k or less alphabet symbols o € ¥. In other
words, a string w is well-formed if it doesn’t contain any Xi<;<,. This logic using the
immediate successor relation < yields exactly the Strictly Local languages.

Conjunction of Negative Literals

1. Notice that we’ve defined CNL in such a way that the only connectives it has
the ability to use are conjunction and negation. Recall the exercise from Lec-
ture 1 and 2 where we used —, A to define all of the other connectives of Propo-
sitional Logic. What restriction must hold of negation so that we don’t simply
get back immediately to Propositional Logic?

2. What are some other phenomena that can be formalized as a well-formedness
condition using a Strictly Local language? What are some other phenomena
cannot be formalized in this way?

Returning to the example, intervocalic voicing can be viewed as a well-formedness condi-
tion on strings such that no strings contain a voiceless consonant in between two vowels.

We formalize this using the alphabet ¥ = {V,T, D} where V stands for all vowels, T
stands for all voiceless consonants, and D stands for all voiced consonants. The language
L accepts all and only strings in ¥* which do not contain the substring VI'V'.

Recall that this requires a window of size £ = 3 since we know that substrings like VT'V
and DVTV D are disallowed since a voiceless segment occurs between two vowels, but
substrings like VDV and TV DVT are allowed since voiced segments occur between two
vowels. Very succintly, we can use CNL to state this language exactly: ~(V1T'V)

Of course one can think of this well-formedness purely in terms of restrictions on sub-
strings within a string; however, that would be missing a huge generalization seeing as
these tools have the ability to characterize finite structures other than strings as well.
Namely, we can think about well-formedness in terms of restrictions on sub-structures. Let’s
see this explicitly in terms of strings as >-structures of some signature.

With intervocalic voicing in mind, consider the definition and corresponding graph rep-
resentation of the following Y -structure:

59

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

(D ={0,1,2,3,4,5}
<= {(0,1),(1,2),(2,3), (3.4), (4.5)}
vV ={0,2,4}
D ={1,5}
T={3})
In Figure 4.4, the red color indicates a substructure that is disallowed by this language.
In other words, the negative literal -VT'V is included in this string, and so it is not in
the language. Note that in this graphical representation of our banned substructure, it is

expressed entirely by a window of nodes which are directly connected, which is a hallmark
property of strict locality.

V D V T % D

Figure 4.4: ¥-structure for the string VDVTV D

Banned Substructures and Strict Locality

1. For the intervocalic voicing language, try to define some well-formed -
structures with respect to this language, graphically and/or pictorally.

2. Using the same alphabet ¥ = {V,T, D}, consider the phenomenon of word
final devoicing where a string cannot end in a voiced obstruent. Is this a Strictly
Local language as well? If so, try to explain what sorts of banned substructures
would describe this language, formally and/or graphically (Hint: use x, x).

3. Bonus: Knowing that we can define other types of finite structures, like trees
or autosegmental graphs for instance, what might banning substructures in
this strictly local sense look like in those types of structures?

Since we now know (i) the distinction between the immediate successor < and general
precedence relations < and (ii) CNL combined with < yields precisely the Strictly Local
languages, a natural question to ask is: What language class do we get when we combine CNL
with the general precedence relation?

This combination yields the Strictly Piecewise Languages. In the string case, while Strictly
Local languages enforce inviolable constraints on substrings of length k (or less), the Strictly
Piecewise do the same but for subsequences of length k (or less).

60

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

4.4.2 Strictly Piecewise Languages
Recall the examples on subsequences from Lecture 3 repeated below:

Samala is a language native to the California area. It has a pattern of symmetrical con-
sonant harmony where words cannot contain both [s] and [[]. Words like [posokoso] and
[pofokofo] are well formed, while words like *[posokofo] and *[pofokoso] are ill-formed.

This would simply require banning both the subsequences [...s and s... [, since any oc-
currence of both in a string makes it ill-formed. Thus, this language is Strictly Piecewise
since it is described using bans on the occurrence of particular subsequences. Consider
the X-structure, defined formally and graphically below. Notice that this is defined with
the general precedence relation <.

(D ={0,1,2,3,4}
<= {(0,1),(0,2),(0,3),(0,4),(1,2),
(1,3),(1,4),(2,3),(2,4), (3,4)}
J={0}
s < {4}
0= {1,3}
t = {2})

As before, the banned substructure in the graphical representation of our structure is rep-
resented by the color red. Note that in this case, the restriction is on not a window of
nodes immediately adjacent to each other, it is on a window of nodes generally preceding
eachother with arbitrarily many nodes in between them. Since in Samala this is a symmet-
rical restriction where neither [can precede s nor s can precede |, the following ¥-structure
is also ill-formed. The only difference in their structure is that the [and s that nodes 0 and
4 bore were switched.

(D ={0,1,2,3,4}
<= {(0,1),(0,2),(0,3),(0,4),(1,2),
(1,3),(1,4),(2,3),(2,4),(3,4)}
[{4}
sd:ef{()}
0=1{1,3}
t < {2})

So, any structures for which [(z)A s(y) A (z < yVy < x)) holds will not be in the language.

61

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Sarcee is an Athapaskan language with an asymmetrical consonant harmony pattern. In
Sarcee, [s] may follow [[], but [[] may not follow [s]. So words like [posokoso] and [pofokofo],
and [pofokoso] are all well-formed, but words like *[posokofo] are ill-formed.

Note that due to the asymmetrical nature of the pattern, this would only require banning
the subsequencess. . . [, since strings where s folllows [are permissible. Thus, this language
is also Strictly Piecewise. So the substrcutres banned by this language are only those where
s precedes [. In the structures shown above, while Samala requires banning substructures
of both forms, Sarcee only requires banning those of the second form.

Strictly Piecewise Languages

1. Let Ly, and L, be the languages described by the Sarcee and Samala pat-
terns, respectively. What are some examples of strings w € Lg,? w € Lggpn?
w e Lsar U Lsam? (RS Lsar N Lsam?

2. Define a Strictly Piecewise language of your own, using an alphabet X of your
choice.

3. Areall Strictly Local languages examples of Strictly Piecewise languages? Why
or why not?

4.4.3 Tier-Based Strictly Local Languages

Recall our example from Lecture 3 regarding Tier-Based Strict Locality. We defined Tier-
Based Strict Locality in the following way:

A language L is TSL-k if there exists a kK € N and a tier ' C ¥ such that all strings in L are
SL-k when restricted to only the symbols in 7'.

This just means that it is Strictly Local when relativized to some relevant subset of the
alphabet. Our toy vowel harmony example is repeated below, where F' stands for front
segments, B stands for back segments, and C' stands for consonants.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S= FccccccccoccCccrF

Figure 4.5: Tier Construction

In Figure 4.5 we see that even though the two F’s can be arbitrarily far from one another,
when only considering F’s and B’s while erasing all C’s, this language is SL-2, since any
occurence of F'B or BF on the tier will make the entire string ill-formed.

In our models so far, we have a way of talking about segments being immediately adjacent,
or generally preceding one another. If we want to restrict our view to only some relevant

62

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

subset of symbols, we can use these relations to do so. Suppose we wanted to express a
relation between elements = and y in the string that states = generally precedes y and both
are either F' or B. This is simply done by saying = precedes y and both bear either F' or B
as a label:

< (2,9) = < (z,y) A (F2) V B(@)) A (F(y) vV B(y))
Call this { ¥, B}-precedence. From this, we can directly define immediate { F, B }-precedence
denoted <{*B}(x, y) by stating that <{¥*B} (z,y) and there is no intervening element that
bears either F' or B in between x and y. Formally,

AP (z,y) £ < (@,y) ATz | <PV (2,2) A <P (z,9)]

Observe the X-structure below for our toy vowel harmony example:

(D=1{0,1,2,3,4}

< E{(0,1),(1,2),(2,3),(3,4)} SiFB}
tFPEE{(1,4)}

FE{1

B = {4}

C ={0,2,3}

In this example, the banned substructure still makes reference to a local window of ele-
ments, but relativized to only a certain subset of them, namely F' and B. This casts non-
local phenomena in such a way that they are evaluated locally, just in a relative sense. This
is different than the Strictly Piecewise case because the relation used to ban substructures
requires (relative) immediate adjacency thus remaining local, whereas Strictly Piecewise
languages require general precedence.

Of course this is simply one example, where in general we have a relation <” (z, y) for any
subset of relevant symbols 7' C ¥. When combining CNL with <i”, we get precisely the
Tier-Based Strictly Local languages.

Tier-Based Strict Locality

1. Are all Strictly Local languages Tier-Based Strictly Local languages? Why or
why not?

2. What sorts of patterns can TSL capture that SP can’t? Consider the pattern in
Slovenian where an | cannot occur after an s unless there is an intervening t
(Jurgec, 2011). Would this be TSL or SP, and why? (Hint: it is not both!)

3. Consider ¥ = {C,u,u,e,e} where u,e are +ATR and v,e are -ATR. Show the
banned substructures for a language that satisfies ATR harmony.

63

V-NYI #9: Intro to MathLing Czarnecki & Nelson

Tier-Based Strict Locality in Syntax

This idea of Tier-Based Strict Locality can be extended to trees and can account for a
wide range of syntactic phenomena. See Vu et al. (2019); Graf (2022a,b,c); Hanson
(2023).

As a brief toy example, consider the arbitrary alphabet ¥ = {a, ¢, p}, and the set of
all possible trees over this alphabet. Suppose I want to ban configurations where
more than one c dominates a p. The relevant symbols in the tree-tiers are going to
be ¢ and p. We can check a {c, p} tree-tier for banned tree configurations:

b a s c
a a a a TTc--—__ - > D f
a c.- -7

This tree on the left is then in the language since this {c, p} tier doesn’t have two ¢’s
dominating any p.

Using some other machinery (minimalist grammars), nodes can bear features, and
one can construct tier projections of elements bearing a particular feature.

For example, if in a tree you project a wh-tier and you have a mismatch of numbers
of elements (a wh™ and wh™ check each other, but one is leftover) you can use this
to derive certain types of well-formedness constraints in syntactic derivations.

4.5 Interpretations

Up to this point we have primarily been discussing string sets in relation to linguistics
and formal language theory, but there is parallel work, especially in phonology, about
mappings and formal language theory. A subregular hierarchy for function classes is shown
in Figure 4.6 below. We won'’t have the time to get into the details of this hierarchy in
this class, but you may notice some similar terminology here. As was the case with the
subregular hierarchy of stringsets, the idea of locality (and relativized locality) plays a big
role in these function classes as well.

Instead of focusing on the specific formalization of these classes, we will instead focus on
the idea of interpretations as they pertain to model theory. The crude idea is that we can
interpret one structure in terms of another structure. While interpretation in formal logic
is often used for checking the decidability of different mathematical theories, computer

64

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Regular Relations

Left Right
Subsequential Subsequential
a D Input — K
‘ Tier-based Strictly Local ‘

Left Output Right Output
Tier-based Strictly Local ‘ Tier-based Strictly Local
Input
‘ Strictly Local ‘

Left Output Right Output
Strictly Local Strictly Local

Finite
Figure 4.6: A hierarchy for subregular functions.

scientists realized that it can also be used to describe mappings. Recall that a map is just
another term for a function. So what we are going to describe is a mapping from one
linguistic object to another.

We will introduce interpretations informally in the following way. An interpretation is a
function 7 : ¥ — I" where ¥ and I" are both model signatures. The denotation of the func-
tion, requires the following elements: a function ¢4onain Wwhich determines which elements
of the input are in the domain of the function, a copy set C' which determines how many
copies of each input element to include in the output, a function ¢;;cense Which determines
which elements in the output structure are licensed, and a denotation for every function
and relation in the output signature I' described only with ¥-formula.

Suppose we had the following two model signatures:

<p()’ S()7 Raa Rb>
(p(),s(), R, Ra)

We can interpret I in terms of X in the following way. For all functions and relations, ¢
or ¢p refer to the output denotations while F' or R refer to the input denotations.

by
r

def
¢domain = True

C={1}

def
¢license(m) = True

65

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

What does this do? Well we keep the predecessor and successor values from the original
structure, but swap all of our a’s to i’s and b’s to d’s. So a string like bababa which is
a Y-structure becomes the I'-structure dididi. We say that the d elements in dididi are
interpreted as d only because their corresponding element in bababa is a b.

The logical formula above provide a denotation of a function or transduction. Under this
view we are mapping from a X-structure to a I'-structure. But ultimately we are interpret-
ing a new I'-structure in terms of an old > -structure.

4.5.1 Phonological Maps

Due to their domain-general nature, model-theoretic interpretations prove to be extremely
useful for understanding the interaction between different linguistic structures. In the pre-
vious section we saw how an output I'-structure can be interpreted in terms of an input
¥-structure. Specifically within phonology, interpretations can give very natural compu-
tational explanations of how underlying representations (UR’s) transform into surface
representations (SR’s). There is a sense in which this interpretation of SR’s in terms of
UR'’s is essentially the same thing as a transformation, or transduction, from UR’s to SR’s.

For example, consider the rule a — b/c__d. Ultimately what this tells is that whenever we
have a UR containing the string cad, there will be a corresponding SR that interprets that
substructure as cbd. Given the machinery for interpretations we have sketched above, this
is equivalent to saying there is an interpretation with the functions ¢,, ¢, ¢., and ¢, with
the following denotations:’

b0 = a(z) A =le(p(z)) Ad(s(z))]

¢y = () V [a(z) A c(p(x)) Ad(s(z))]
e & ()

¢a = d(z)

As we will see toward the end of these lecture notes, this formal machinery is not only
mathematically robust and far reaching in its ability to formalize linguistic phenomena
across a variety of different domains, but it also allows us to be sufficiently restrictive while
curating a theory of linguistic computation. Striking this balance between expressivity and
restrictivity is crucial not only for phonology, but for scienctific inquiry in general.

Also important to note is the difference between what is called an imperative and declar-
ative approach to computation. When computing something imperatively, to complete a
given task the programmer explicitly states the steps sequentially as a series of commands.
The exact control flow to perform a given task is specified from beginning to end as a series
of instructions that correspond to statements along the lines of if X happens, then do Y,
otherwise Z happens, then do. ... On the other hand, when using a declarative approach,
the form of the desired outcome of a procedure is stated without stating the steps of the

>We omit ordering relations as well as domain, licensing, and copy set info since they are irrelevant to
the map at hand.

66

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

procedure itself explicitly. These interpretations are declarative in nature because we are
describing the form of the output structure given some configurations in the input struc-
ture. This says nothing about where to start, where to finish, or how to do it: rather, it
simply states that in the output a particular piece of the structure will have this property if
a corresponding piece of the input structure had that property. Statements simply pick out
pieces of the structure where some property holds true, and ensures that corresponding
properties hold true to the output structure. Thus, we are describing the desired outcome
of the computation more or less agnostically to things like steps in a sequence.

In the previous section we saw an example where the input structures were strings that
consisted of a’s and b’s, and the output structures were strings that consisted of i’s and
d’s in the place of the input a’s and 0’s. There are two pieces of this mapping that are
important:

e Labeling relations: When is something in the output a d or an ¢?
e Ordering relations: Where do p and s hold in the output?

Very simply, something is an 7 in the output if it was an a in the input, something is a d in
the input if it was a b in the input, and the order of the elements remains the same. These
were defined in the previous section, but below a diagram of this interpretation is shown:

p p P P P
s S s s S
b a b a b a

i}
p p p p p
ot (o T {0 Lo (o] 1] 15)
S S S S S
d 7 d 7 d 1

This example maps strings to strings of the same size since nothing is added or deleted.
This is because the copy set was C' = {1}, and so the string cannot have more elements in
the output than it did in the input. Suppose we wanted an example where we complete
epenthesis, where a vowel is inserted in between two consonants in the input. As we will
see, this will require a copyset C' = {0, 1}.

Consider the alphabet {C, '} to represent consonants and vowels. We want to define an
interpretation where any given input string that contains a C'C' substring will result in a
CV C substring. This requires a copyset of C' = {0, 1} since the output can be larger than
the input, there must be a place to insert the vowel in between the two consonants and this
is what the copies are used for.

Below, a relational model of the String CVCCV is shown as the input ¥ structure. Our
output I structure is the string CVCV CV, in accordance with our rule. Below the inter-

67

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

pretation is shown explicitly. At first this may look slightly daunting, but a little unpacking
of each piece will make it clear how natural this mapping is.

First note that in the digram above, the dotted nodes indicate unused copies, those that
are not relevant to the output structure. Any copies have the potential to be used, but it is
the explicit definitions of the interpretation determine which are relevant.

From here, let’s start with the labeling relations. In the output structure, something will
be a C iff it was a C'in the input. A C will never be inserted since our mapping will only
ever insert V’s between two C’s. The 0-th copies, z°’s, are reserved for those nodes that
were already in the input string and the 1-st copies, z'’s, are reserved for those nodes that
add to the string. So C(z) will only ever be true for the 2" copies and not the z' copies. We
can make the following definitions to reflect this below:

ef C(I)
ef J_

o

Peo(T)
pcr ()

a

The V’s are slightly more complicated since something will be a V' in the output if it was a
V in the input; however, it will also be a V' in the output if that piece of the string consisted
of a CC substring. Thus, a V will occur in the output if it was a V' in the input or if it was
a C'in the input immediately followed by another C.

Pyo(z) = V(z)
dvi(x) = Cz) A Jy[Cly) A <(z,y)]

£

This covers all of the labeling relations. Let’s move to the ordering relations. Our input
signature is ddefined in terms of immediate precedence <I(z,y), and so will our output
signature; however, there are some adjustments that must be made. Since we have differ-
ent copies, we must be able to mediate precedence between different copies. Since we have
two copies, 0 and 1, this entails splitting in up into 2? = 4 different relations. These are
discussed below where <"/ (z,y) indicates that the i-th copy of x immediately precedes
the j-th copy of y: Let’s break each of these down.

68

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

The ¢_o.0(,,) relation mediates immediate precedence between nodes where both were
unchanged from the input. This will only be true whenever both = and y are not C’s that
immediately precede eachother. This is defined formally below:

Sv0(ay) = ~(Clx) A C(y) A<z, y))

The ¢_o0.1(,) relation mediates immediate precedence between nodes where the second is
an inserted V/, since this is the only thing that will occupy the z' copies in our interpreta-
tion. This is defined formally below:

P01 () L=y AC(x) AI2[C(2) A<z, 2)]

Similarly, the ¢ 1.0,) relation mediates immediate precedence between nodes where the
first is an inserted V. This is defined in the following way:

¢<1170(J:,y) = x 7é y N C(ZE) A C(y) A <](‘T7 y)

The ¢ 411,) relation mediates immediate precedence between inserted V’s; however, you
may notice that this will never occur since a V' will only be inserted between two C's, so

this one is always false.
def

¢<11,1 (y) — 1

Thus, all of the output relations have been defined

Translation Between Different Structures

We have seen that we have the can use X-structures to formally characterize both
strings and trees. If we think about the procedure of linearization, this can be for-
malized as a function from tree structures to string structures. This procedure will
not be defined explicitly here, but an example is shown below.

tasty burgers
1
(O D——o)
John eats tasty burgers

Asbefore, our tree structures are defined using general dominance <* and our string
structures are defined using the immediate successor relation <. In this sense, the
symbol < happens to be overloaded but these are ultimately different relations.

69

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

4.6 Closing Thoughts and Further Reading
Closing Thoughts

In this lecture, we saw some of the tools from formal logic that mathematical linguists use
for linguistic theorizing. More specifically, it was shown how model theory can be used
to characterize different classes of languages in the subregular hierarchy, which is partic-
ularly useful for reasoning about phonological generalizations. We also saw briefly that
these tools can be extended to trees for reasoning about syntactic generalizations. While
these generalizations can be expressed using a variety of mathematical tools, there are
well established connections between these tools, which show that there are very deep
and fundamental properties underlying these patterns and classifications. It was also dis-
cussed how logic can be used to define mappings between structures of different kinds,
which is of course very useful for the working linguist, who often thinks in terms of finite
structures such as strings and trees.

Further Reading

For more on representation and comparison between varying representations using model
theory, see Strother-Garcia (2019); Oakden (2020); Jardine et al. (2021); Nelson (2022).

For more on model-theoretic syntax, see (Rogers, 1996, 1998).

For more on formally expressing phonological processes using model theory, see Bhaskar
et al. (2020); Chandlee and Jardine (2021); Oakden (2021).

For more on applications of model-theory to understanding some non-linear structures
see Jardine (2017, 2019); Vu et al. (2022).

For more on learnability, see Rogers et al. (2013); Lambert et al. (2021); Rawski (2021).

For more on linguistically-motivated explanations of the underlying similarities between
automata-theoretic, model-theoretic, and algebraic approaches to formal language theory,
see Lambert (2022).

70

Practice Problems

The following are a list of practice problems that students may work on after the comple-
tion of each lesson. Individual practice problems are marked 1-3 stars indicating relative
difficulty. Problems marked with % should be easily solved after reading the course notes.
Problems marked %% & %% % may require you to extrapolate and think about the ma-
terial in new ways.

Lesson 1

* 1.

* 2.

* % 3.

* % 4.

Consider the two sentences below:
(a) John often goes to the store with Mary.
(b) Mary goes to the supermarket.
Let S; be the set of words in (a) and S, be the set of words in (b). Write out as sets:
- their union S; U S,
- their intersection S; N S,
- their set difference S \ Ss

Let I = {i,1,i} and U = {u, u, 1, &} be two sets of vowels. Write out their Cartesian
Product I x U. How many elements are in this set?

Consider the a set of segments ¥ = {n, m, 1, d, b, g, a} and a nasalization process
that takes a form and adds a nasal with the corresponding place of articulation to
any non-nasal consonant that appears right before a vowel. For example, the form
bada would result in banda, the form baba would result in bamba, the form baga
would result in banga, and so on.

This process can be considered a relation nas(z, y) where x is the input and y is the
output. Does this relation constitute a function? Why or why not? Give concrete
examples to support your reasoning.

In the first lesson, we saw an example of a context-free language a™0". Recall that
recognizing this language required keeping a memory of arbitrarily many charac-
ters: in order to know how many b’s are in the string, you have to know how many
a’s are in the string.

71

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

kK 5.

Yk k 6.

In stress assignmnet patterns, there is something called the Midpoint Pathology. In
this pattern, stress targets the middle of a string for odd-length strings, and falls
on the last syllable of the first half of the string for even length strings. Let o be
an unstressed syllable and & be a stressed syllable. The Midpoint Pathology can be
described as a mapping of inputs—outputs with some examples below:

600 — 060
G000 — 0600
60000 — 00600
600000 — 006000
0600000 — 0006000

Is the resulting language context-free? Why or why not?

Bonus: Does your answer change if for even-length strings, the stress falls on the
first syllable of the second half of the string, or is it the same?

In syntax, the c-command relation holds true of two nodes z, y in a tree if and only
iff neither x nor y dominate each other and every node that dominates z also dom-
inates y. Observe the tree below, where the following statements are true: “the”

c-commands “coffee”, “fell” c-commands “from”, “a” does not c-command “fell”,
“coffee” does not c-command “fell”.

TP
DP T
the NP T vP
— T
black coffee t v’
fell VP
—_—
t PP
from DP
/\
a NP

wooden table

- Is the c-command relation symmetric? Is it transitive? Why or why not?
- Explain briefly why this relation cannot be a function.

In thinking about language production and perception, we may want to consider two
types of functions: phonological functions which map between syntactic representa-
tions (SYN) and phonological representations (PF) and semantic functions which
map between syntactic representations (SYN) and semantic representations (LF).
To begin, define the types for the following four functions:

- Prodphon - Percppon - Prodgen - Percgen

If you have done this correctly, you should now be able to define two composed
functions. Do so now and then answer the following questions:

72

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

- What types do these functions have?
- What is the role of syntax under this view?

- Does this differ from the way in which syntax is normally viewed?

Lesson 2

* 1.
* 2.

%% 3.

* % 4.

Yk k 5.

Prove using a truth table that (P — Q) A (Q — P) is logically equivalent to P < Q.

Write a recursive string to string function (like we did for the length of a string) that
takes in an input string w and returns a string ww’ where w” refers to the reversed
version of the string. For example, the input string abc would return abccba. You
should be able to do so with a single base case and single recursive case.

Let the symbols o, ¢ represent unstressed and stressed syllables, respectively. Draw
the graphical representation of the following Finite State Automaton and explain the
language that it accepts.

Y. ={o0,5}

Q=1{0,1,2,3}

q = {0}

6 ={((0,0),1),((4,0),3),((0,1),3),((,1),2), ((0,2),1),((6,2),3)}
F={2}

In the “Defining Connectives with Connectives” exercise block on Page 17 there was
a bonus exercise asking you to define all of the basic logical connectives using only
NAND (t). If you have not done that exercise, do so now. Once completed, use the
following truth table for NOR (1) to define all of the same logical connectives using
only NOR.

PlQ
1
0

0
0

— = O oO|lhy
— o R ol

We have been discussing two formal languages throughout our notes: a"b and a"b".
In general, for any string w, w" refers to n repetitions of w. In describing formal
languages, it is common to use two other superscripted symbols: w* refers to string
w repeated 0 or more times; w* refers to string w repeated 1 or more time.

- Suppose we wanted to describe the language that contains all and only the
strings containing one or more a. Well, we could do so with a*. Instead, define
this formal language without using + (but with using any of the other tools
introduced above).

73

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

In the previous lesson, we discussed union and intersection in relation to sets. One
additional property is set complement which is everything in the sets domain that is
not in a given set. We can also talk about the union, intersection, and complement in
relation to the stringsets (languages) accepted by finite state acceptors. This requires
us to have a complete machine which corresponds to it being a fotal function. What
this means is that for each state ¢ in the machine, and each symbol ¢ in our alphabet
¥, §(0, q) is defined. Before explaining how to define the intersection, union, and
complement of two acceptors, draw two complete machines for the following two
formal languages with the alphabet ¥ = {a, b, ¢}:

- A= (ab)Tcb(ab)*
- B = (ab)*

Suppose that the first language is represented as A = (Q 4, qoa, 64, Fla) and the sec-
ond language is represented as B = (g, qoB, 05, F's). We can construct machines
that will generate/recognize their union, intersection, and complement using the
following definitions.

- Construct an acceptor C' = (@, ¢, 6, F') which will recognize the union of A and
B as follows:

Q=0Qa%xQp

g0 = (o4, qoB)

0((4as), @) = (dq, @) Where 64(¢a, @) = ¢, and dp(q, a) =
F'={(qa %) | 9 € Faor q, € F}

- Construct an acceptor C' = (Q, ¢,, 9, F') which will recognize the intersection of
A and B as follows:

Q=QaxUp

9 = (q0a, q0B)

0((4a:), @) = (q, q;) where 04(qa, @) = ¢, and dp(qv, a) = g,
F={(qa,) | o € Faand ¢, € Fp}

- Construct an acceptor C' = (Q, ¢, 0, F') which will recognize the complement
of A as follows:

Q=0Qa
qo = qoA
0=04

F:{Qa|Qa¢FA}
e Draw the machines for AU B, AN B, and A.

74

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

%% % 6. One point of debate within generative theories of phonological mappings is whether
or not the different processes that occur in a given language happen in serial or paral-
lel. For example, ordered rules are applied serially while OT grammars perform the
entire mapping in parallel. We can think of the serial/parallel distinction in the same
way with Finite State Transducers. Suppose we have the following two phonological

rules:
(@) a—b/c_d
(b) d—e/b_#

Given an alphabet ¥ = {a, b, ¢, d, e}, draw two transducers (one for each process). If
we wanted to order these processes, we could have the output of one transducer be
the input to the other. This corresponds to the serial view of phonological knowledge
and supports the psychological reality of intermediate forms. Suppose instead we
wanted to draw a single machine that would be extensionally equivalent to ordering
rule (a) before rule (b). Draw this machine now.

The corresponding machine has a single input/output pair and corresponds with the
parallel view of phonological knowledge. Here there is no support for intermediate
forms because intermediate forms do not exist in our single machine. If you are
struggling drawing any of the three transducers from this exercise, the following
reminders may help: 1) in the definition for finite state transducers, the input must
be a single symbol but the output can be a string of any length (including the empty
string); 2) the output function may be useful when thinking about processes that
happen at the end of a word.

Lesson 3

% 1. Recall that we denoted the set of all strings enclosed by boundary markers x, x in
the following way: {xwx | w € £*}. Explain the difference between this set and the
set X U {x, x}.

% 2. Observe the following FSA which is defined over the alphabet ¥ = {c,4, (,)}:

- Describe the language accepted by this automaton.

- Write out the automaton’s transition relation and explain why it is a function. Is
it a total function? If it isn’t, which transitions could be added to make it total?

75

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

* % 3.

*ok 4.

* %% 5.

Regarding the subregular hierarchy, so far we’ve seen some examples of Strictly Lo-
cal languages and Strictly Piecewise Languages.

Recall that Strictly Local languages are defined in terms of which substrings of a
fixed length k are permissible in a given word, and analagously Strictly Piecewise
languages are defined in terms of which subsequences of a fixed length £ are per-
missible in a given word.

Suppose we have an alphabet > = {a, b, ¢} and a language called Has-B which con-
tains any and all strings that contain a b. Here are some randomly chosen examples
of strings in this language:

b, cb, abc, accecccceeb, acacacacacacaccab, . . .

Is this language a Strictly Local language? In other words, is there some uniform
window of size k where it will be possible to tell whether a string of arbitrary length
will contain a b? Explain your reasoning.

Bonus: Thinking from a logical perspective as opposed to an automata-theoretic
one, does it become clearer which family Has-B is a member of? Hint: Quantification.

Write a context free grammar that is able to generate the sentences “I shot an elephant
in my pajamas”. Keep in mind that this sentence has two available readings, which
should be reflected in the definition of the CFG. Hint: where is the PP?

A monoid (5, -, e) is an algebraic object consisting of a carrier set S equipped with
a binary operation -(z,y) = z where z,y,z € S, and an element e, that follows the
following properties:

- Associativity: Vz,y e S, (z-y)-z=x-(y-2)
- Identity elemente: Vze Se-v=z-e=2x

For example, the following are monoids:
(N, +,0) where the set N is the natural numbers and + is ordinary addition.
(R, x, 1) where the set R is the real numbers and x is ordinary multiplication.
({T,F},N,T) where T, F' are true and false and A is ordinary conjunction.

So far we have only seen string-to-string transducers, but transducers can be gener-
alized by incorporating monoids. We will not make the defininitions explicitly, but
below we will explore what other sorts of mappings these transducers can accom-
plish with some minor tweaks.

In string-to-string transducers, we are using the monoid where the carrier set is the
of all strings ¥*, the binary operation is string concatenation -(z, y), and the identity
element is the empty A.

Recall the graphical representation of the string transducer from Page 29 that turns
voiceless segments immediately following nasal segments into their voiced counter-
part.

76

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

%k %k 6.

Consider a constraint *mp that penalizes substrings of “mp” in a given string.

- Change the transducer above so that it counts violations *mp. Which monoid
could be used to do this?

- Change the transducer above so that it assigns a lower real-valued number to
strings with more violations of *mp. Which monoid could be used to do this?

- Show how this works on both transducers with a string of your choice as an
example.

Hint: What does the transducer output at each step?

Recall the definition of a Rewrite Grammars and the restriction that gives rise specif-
ically to Context-Free Grammars, repeated below:

A Rewrite Grammar or Phrase Structure Grammar is a tuple (7', N, S, R) where:

T is a set of terminal symbols

N is a set of non-terminal symbols

S is a non-terminal starting symbol

R is a set of rewrite rules where A - Band A,B € (NUT)*

Specifically, a Context-Free Grammar is a Phrase Structure Grammar such that for
every rewrite rule A — B € R, it is the case that A € N is a single non-terminal and
B € (N UT)* is a sequence of non-terminals or a single terminal.

Consider the following Rewrite Grammar:

S — aTh | abe
aTl — aaTb | ac

Notice that this is not a Context-Free Grammar since there is a rewrite rule A — B
that contains an A that is not single non-terminal. Below, there are three examples
of derivations for strings that are in the language:

e S — abc

77

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

e S —alb
— aaT'bb
— aacbb

e S —alb
— aal'bb
— aaaT'bbb
— aaacbbb

Describe the language that is generated by this Rewrite Grammar.

Lesson 4

% 1. Recall the syntactic relation c-command from the exercises in Lesson 1. This relation
holds true of two nodes z, y in a tree if and only iff neither nor y dominate eachother
and every node that dominates = also dominates y.

In Lesson 4 we saw that tree models can be defined using general dominance <*(z, y)
and selection < (z,y). Define a predicate c-com(z, y) that is true when a node z c-
commands a node y in a tree using First-Order logic.

% 2. Suppose we had the following model signature for describing syllables:

(syl(z),ons(x),nuc(zx), cod(z), R(z,y))

This allows us to build X-structures such as the following:

- Write out the mathematical definitions for each of these Y-structures (assume
if two domain elements are connected, they satisfy R(z,y)).

- Notice that all of these structures have a nucleus (nuc). What would a X-
sentence look like that only structures with a nucleus would satisfy?

- Bonus: There is no mechanism currently that will enforce that a coda doesn’t
come before a nucleus (in other words they are unordered). How could the
model signature be altered to account for ordering within the syllable?

%% 3. Let ¥ = {L, H} represent an alphabet of high toned and low toned syllables. Using
CNL, write a grammar for a language that bans an H tone immediately followed by
an L tone in word-final positions. You can (but need not!) use boundary symbols

78

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

x, X. Show the graphical representation of the model of a well-formed and an ill-
formed word in the language.

%% 4. In going from Propositional to First-Order Logic, adding quantification grants the
ability to define strict precedence <i(z,y) in terms of general precedence < (z,y). In
short, a node z strictly precedes a node y iff = generally precedes y and there’s no
intervening z between them. More formally,

A(x,y) =< (z,y) A =3z[z < 2 < 9]

Consider the following graphical representation of a string model for the string
ababa, defined using general precedence < (z,y).

This definition works one way, but can general precedence < (z,y) be defined
in terms of strict precedence <i(x,y)? Why or why not?

Define a relativized precedence called a-precedence <{® (x,y) that applies to
only nodes bearing a, and immediate a-precedence <} (x, y).

Use immediate a-precedence to write a formula describing when a domain el-
ement is in between two a’s on the “a-tier”.

Now, write a formula using strict precedence (i.e. successor) to write a formula
describing when a domain element is in between two b's generally.

- Suppose we extend out alphabet to {a,b, c} and imagine a process that turns
an a that is in between two a’s on the “a-tier” into a ¢, unless it is immediately
between two b’s. Thus, ababa — ababa and abababa +— abababa, but abaca —
abcca and ababaca — ababeca. Use your formula from above to write a single
formula describing the precise conditions that lead to a node surfacing as a cin
the output (don't forget to consider segments that were already c’s in the input
structure).

% %% 5. Now that you have had experience thinking about intervocalic voicing in terms of
well-formed strings, we want you to shift gears and think about it in terms of a pro-
cess. This would look like a rule 7' — D / V_V. Furthermore, we want you to
describe this process model-theoretically as an interpretation from one structure to
another structure. Use the set {V, T, D} as both the input and output alphabets. Use
the following steps:

79

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

- First, define an interpretation such that the model signatures contain the order-
ing functions s(z) and p(x).

- Second, define an interpretation such that the model signatures contain the or-
dering relation <i(z, y).

- Once you've have defined both your interpretations, describe what symbols of
First-Order Logic are included/not-included in the specific sets of formulas in
each part (hint: consult Table 4.1). Does the inclusion of certain symbols within
one interpretation suggest it belongs to a more expressive class than the other?
Think about this in terms of what other types of properties you could describe
about structures with specific logic symbols.

%% % 6. Interpretations define an output structure in terms of input properties, but some-
times it seems that we might want to define things in terms of output properties.
Consider a phonological process such as iterative regressive voice assimilation. This
is a process whereby the voicing feature of the final segment spreads leftward through-
out the string, ensuring all segments to its left share the same value for voicing (this
is somewhat of a simplification). Using the alphabet ¥ = {V,N,T, D} where V'
stands for all vowels, N stands for all sonorant consonants, 7' stands for voiceless
obstruents, and D stands for voiced obstruents.

- Try to write a formula ¢yeice(z) for describing the voicing properties of out-
put segments. In our input structure, assume that voice(V) = voice(N) =
voice(D) = true and voice(T') = false. One possibility is to determine the
voicing of non-final elements based on the voicing property of its successor in
the output. This would require a recursive definition such that you are using
the output function you are defining in the denotation itself. In your attempt
to do so, you should run into a problem. Describe what this problem is.

One way to solve this is to define our interpretations using a different style of formal
machinery (but ultimately is quite similar to mathematical logic). Boolean Monadic
Recursive Schemes (BMRS) are an available formalism that was developed to ex-
plain patterns like the one above. We will not get into the full details here, but inter-
ested parties can see Bhaskar et al. (2020) and Chandlee and Jardine (2021) for more
details. The important aspect for our purposes is the use of IF...THEN...ELSE syntax.
With just this simple syntax, we can capture all of the logical formula we already
were using. In general, a BMRS function ¢ evaluates to T meaning “true” or | mean-
ing “false”. This is done by writing statements in each block of the IF...THEN...ELSE
statements. As an example:

Gvoice() = IF stop(z) THEN L ELSE voice(s(x))

would be a statement saying domain element z has the property of being [-voice] in
the output structure if it is a stop in the input structure, otherwise its value for voic-
ing depends on its successor in the input structure. The only restriction is that the
function should return a boolean value. Therefore, you should be careful of the types
as you fill in the subparts of the IF...THEN...ELSE statements. Before returning to the

80

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

linguistics problem at hand, the following problem will be useful for understanding
how the BMRS syntax works:

- Assume we just have general predicates P and () and want to write BMRS
functions that capture various logical connectives. Write functions that capture
PANQ,PVQ,—-P,and P — Q.

Now that you have had some practice with BMRS syntax, let’s go back to our original
problem. Can we write an interpretation using BMRS that will correctly define the
output voicing properties of segments and also converge? Remember that you will
want to write a recursive function and therefore using ¢yoice in its own definition.

If you successfully wrote the function for general voicing assimilation you can at-
tempt the following more complicated variations:

- Change your function above so that only obstruents (7, D) act as triggers and
targets. That is, the voicing assimilation process should only occur if the fi-
nal consonant is 7" or D and should only continue until it reaches a sonorant
consonant IV or vowel V which act as blockers.

- Change your function above so that only obstruents (7, D) act as triggers but
everything is a target. That is, the voicing assimilation process should only oc-
cur if the final consonant is 7" or D but will continue all the way to the beginning
of the string.

- Change your function above so that only obstruents act as targets but every-
thing is a trigger. That is, the voicing assimilation process should only occur
if there is an obstruent in the second to last position in the string and spread
leftward for as many obstruents it has to its left.

81

Bibliography

Andersson, S., Dolatian, H., and Hao, Y. (2019). Computing vowel harmony: The gener-
ative capacity of search & copy. In Proceedings of the Annual Meetings on Phonology.

Balakrishnan, V. K. (2012). Introductory discrete mathematics. Courier Corporation.

Bhaskar, S., Chandlee, J., Jardine, A., and Oakden, C. (2020). Boolean monadic recursive
schemes as a logical characterization of the subsequential functions. In Language and
Automata Theory and Applications: 14th International Conference, LATA 2020, Milan,
Italy, March 4-6, 2020, Proceedings 14, pages 157-169. Springer.

Burness, P. A., McMullin, K. J., Chandlee,]., Burness, P., and McMullin, K. (2021). Long-
distance phonological processes as tier-based strictly local functions. Glossa: a journal
of general linguistics, 6(1).

Chandlee, J. (2017). Computational locality in morphological maps. Morphology,
27(4):599-641.

Chandlee,]J. and Heinz, J. (2017). Computational phonology. In Oxford Research
Encyclopedia of Linguistics.

Chandlee, J. and Jardine, A. (2021). Computational universals in linguistic theory: Using
recursive programs for phonological analysis. Language, 97(3):485-519.

Church, A. (1932). A set of postulates for the foundation of logic. Annals of mathematics,
pages 346-366.

Church, A. (1933). A set of postulates for the foundation of logic. Annals of mathematics,
pages 839-864.

Daciuk, J., Mihov, S., Watson, B. W., and Watson, R. E. (2000). Incremental construction
of minimal acyclic finite-state automata. Computational linguistics, 26(1):3-16.

De Santo, A. and Graf, T. (2019). Structure sensitive tier projection: Applications and
formal properties. In Formal Grammar: 24th International Conference, FG 2019, Riga,
Latvia, August 11, 2019, Proceedings 24, pages 35-50. Springer.

De Santo, A. and Rawski, J. (2020). What can formal language theory do for animal cog-
nition studies? Royal Society open science, 7(2):191772.

De Santo, A. and Rawski, J. (2022). Mathematical linguistics and cognitive complexity. In
Handbook of Cognitive Mathematics, pages 1-38. Springer.

82

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Dinnsen, D. and Garcia-Zamor, M. (1971). The three degrees of vowel length in german.
Research on Language & Social Interaction, 4(1):111-126.

Dolatian, H. and Heinz, J. (2019). Learning reduplication with 2-way finite-state trans-
ducers. In International Conference on Grammatical Inference, pages 67-80. PMLR.

Dolatian, H. and Heinz, J. (2020). Computing and classifying reduplication with 2-way
finite-state transducers. Journal of Language Modelling, 8(1):179-250.

Eccles, P. J. (2013). An Introduction to Mathematical Reasoning: numbers, sets and
functions. Cambridge University Press.

Graf, T. (2012). Movement-generalized minimalist grammars. In Logical Aspects of
Computational Linguistics: 7th International Conference, LACL 2012, Nantes, France,
July 2-4, 2012. Proceedings 7, pages 58-73. Springer.

Graf, T. (2022a). Diving deeper into subregular syntax. Theoretical Linguistics, 48(3-
4):245-278.

Graf, T. (2022b). Subregular linguistics: bridging theoretical linguistics and formal gram-
mar. Theoretical Linguistics, 48(3-4):145-184.

Graf, T. (2022c). Typological implications of tier-based strictly local movement. In
Proceedings of the Society for Computation in Linguistics 2022, pages 184-193.

Graf, T. and Mayer, C. (2018). Sanskrit n-retroflexion is input-output tier-based strictly
local. In Proceedings of the fifteenth workshop on computational research in phonetics,
phonology, and morphology, pages 151-160.

Hagerup, A. (2011). A phonological analysis of vowel allophony in west greenlandic. Mas-
ter’s thesis, Norges teknisk-naturvitenskapelige universitet, Det humanistiske fakultet .

Hanson, K. (2023). A tsl analysis of japanese case. Proceedings of the Society for
Computation in Linguistics, 6(1):15-24.

Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman,
L. and Plank, F., editors, Phonological Typology, Phonetics and Phonology, chapter 5,
pages 126-195. De Gruyter Mouton.

Heinz, J.,, Rawal, C., and Tanner, H. G. (2011). Tier-based strictly local constraints
for phonology. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, pages 58-64.

Hodges, W. (2018). A short history of model theory. In Button, T. and Walsh, S., editors,
Philosophy and Model Theory, chapter 18, pages 439-505. Oxford University Press, Ox-
ford.

Hopcroft, J. E. and Ullman, J. D. (1969). Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc.

Howe, P. (2021). Central malagasy. Journal of the International Phonetic Association,
51(1):103-136.

83

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Hunter, T. (2019). What sort of cognitive hypothesis is a derivational theory of grammar?
Catalan journal of linguistics, pages 89-138.

Isac, D. and Reiss, C. (2013). I-language: An introduction to linguistics as cognitive
science. Oxford University Press, USA.

Jager, G. and Rogers,]J. (2012). Formal language theory: refining the chomsky hi-
erarchy. Philosophical Transactions of the Royal Society B: Biological Sciences,
367(1598):1956-1970.

Jardine, A. (2017). The local nature of tone-association patterns. Phonology, 34(2):363384.

Jardine, A. (2019). The expressivity of autosegmental grammars. Journal of Logic,
Language and Information, 28:9-54.

Jardine, A., Danis, N., and lacoponi, L. (2021). A formal investigation of g-theory in com-
parison to autosegmental representations. Linguistic Inquiry, 52(2):333-358.

Jurgec, P. (2011). Feature spreading 2.0: A unified theory of assimilation.
Keenan, E. L. and Moss, L. S. (2009). Mathematical Structures in Language. CSLIL

Kobele, G. M. (2006). Generating copies: An investigation into structural identity in
language and grammar. PhD thesis, University of California, Los Angeles.

Kobele, G. M., Retoré, C., and Salvati, S. (2007). An automata-theoretic approach to min-
imalism. Model theoretic syntax at, 10:71-80.

Kornai, A. (2007). Mathematical linguistics. Springer Science.

Kracht, M. (2003). The mathematics of language, volume 63. Walter de Gruyter.

Lambert, D., Rawski,]., and Heinz, J. (2021). Typology emerges from simplicity in repre-
sentations and learning. Journal of Language Modelling, 9.

Lambert, D. J. (2022). Unifying Classification Schemes for Languages and Processes With
Attention to Locality and Relativizations Thereof. PhD thesis, State University of New
York at Stony Brook.

Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In Logical
Aspects of Computational Linguistics: Third International Conference, LACL98
Grenoble, France, December 14-16, 1998 Selected Papers 3, pages 179-198. Springer.

Moll, R. N., Arbib, M. A., and Kfoury, A. (1988). An introduction to formal language
theory.

Montague, R. (1974). Formal Philosophy. Yale University Press.

Nelson, S. (2022). A model theoretic perspective on phonological feature systems.
Proceedings of the Society for Computation in Linguistics, 5(1):1-10.

Oakden, C. (2020). Notational equivalence in tonal geometry. Phonology, 37(2):257-296.

84

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Oakden, C. D. (2021). Modeling phonological interactions using recursive schemes. PhD
thesis, Rutgers The State University of New Jersey, School of Graduate Studies.

Partee, B. B., ter Meulen, A. G., and Wall, R. (1993). Mathematical methods in linguistics.
Springer.

Potts, C. and Pullum, G. K. (2002). Model theory and the content of ot constraints.
Phonology, 19(3):361-393.

Rawski, J. (2021). Structure and Learning in Natural Language. PhD thesis, State Univer-
sity of New York at Stony Brook.

Riad, T. (2014). The phonology of Swedish. Phonology of the World’s Langu.

Rogers, J. (1996). A model-theoretic framework for theories of syntax. arXiv preprint
cmp-lg/9604023.

Rogers, J. (1998). A descriptive approach to language-theoretic complexity. Citeseer.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and
sub-regular complexity. In Formal Grammar: 17th and 18th International Conferences,
FG 2012, Opole, Poland, August 2012, Revised Selected Papers, FG 2013, Diisseldorf,
Germany, August 2013. Proceedings, pages 90-108. Springer.

Rogers, J. and Pullum, G. K. (2011). Aural pattern recognition experiments and the sub-
regular hierarchy. Journal of Logic, Language and Information, 20:329-342.

Salvati, S. (2011). Minimalist grammars in the light of logic. In Logic and Grammar:
Essays Dedicated to Alain Lecomte on the Occasion of his 60th Birthday, pages 81-117.
Springer.

Sipser, M. (1996). Introduction to the theory of computation. ACM Sigact News,
27(1):27-29.

Stabler, E. (1997). Derivational minimalism, page 6895. Springer Berlin Heidelberg.

Stabler, E. P. (2019). Three mathematical foundations for syntax. Annual Review of
Linguistics, 5:243-260.

Strother-Garcia, K. (2019). Using model theory in phonology: A novel characterization of
syllable structure and syllabification. PhD thesis.

Tarski, A. (1954). Contributions to the theory of models. i. In Indagationes Mathematicae
(Proceedings), volume 57, pages 572-581. Elsevier BV.

Turing, A. M. (1936). On computable numbers, with an application to the entschei-
dungsproblem. Journal of Math, 58(345-363):5.

van Rooij, I. and Baggio, G. (2021). Theory before the test: How to build
high-verisimilitude explanatory theories in psychological science. Perspectives on
Psychological Science, 16(4):682-697.

85

V-NYTI #9: Intro to MathLing Czarnecki & Nelson

Velleman, D. J. (2019). How to prove it: A structured approach. Cambridge University
Press.

Vu, M. H,, De Santo, A., and Dolatian, H. (2022). Logical transductions for the typol-
ogy of ditransitive prosody. In Proceedings of the 19th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and Morphology, pages 29-38.

Vu, M. H,, Shafiei, N., and Graf, T. (2019). Case assignment in tsl syntax: A case study. In
Proceedings of the Society for Computation in Linguistics (SCiL) 2019, pages 267-276.

Wang, Y. and Hunter, T. (2023). On regular copying languages. Journal of Language
Modelling, 11(1):1-66.

86

	Opening Remarks
	Overview + Mathematical Background: Sets, Relations, and Functions
	Topics and Goals
	What/Why Mathematical Linguistics?
	Starting Assumptions
	Motivating Ideas
	The Subregular Hierarchy

	Sets
	Relations
	Functions
	Closing Thoughts and Further Reading

	Mathematical Background: Logic, Recursive Data Structures, Automata
	Topics and Goals
	Logic
	Recursive Data Structures
	Strings
	Trees

	Automata
	String Acceptors
	Tree Acceptors
	String Transducers
	Tree Transducers

	Closing Thoughts and Further Reading

	Formal Languages and Automata
	Topics and Goals
	Formal Language Theory
	The Subregular Languages and Phonology
	The Chomsky-Schützenberger Hierarchy
	Subregularity and Phonology
	Finite Languages
	Strictly Local Languages
	Strictly Piecewise Languages
	Tier-based Strictly Local Languages

	The Non-regular Languages and Syntax
	Closing Thoughts and Further Reading

	Model Theory and Logic
	Topics and Goals
	Models
	First-Order Logic
	Model-theoretic Formal Language Theory
	Strictly Local Languages
	Strictly Piecewise Languages
	Tier-Based Strictly Local Languages

	Interpretations
	Phonological Maps

	Closing Thoughts and Further Reading

	Closing Remarks
	Appendix 1: Practice Problems
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

