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Overview

I Model theory and logic can be used as a meta-language to compare and
evaluate different types of phonological feature systems.

I Different feature systems mix {+,−, 0} in different ways (e.g. - privative,
full binary, contrastive).

I Tradeoffs between computation (logical language) and representation
(primitive symbols) allow us to key in on what the meaningful differences
between each system are.

I I show that if negation is used in the logical language it effectively turns
everything into a full (binary) system, erasing the goals of the 0
valuations.
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In particular

I The plan: use different logics and representational primitives to see how
to formally represent three feature systems (privative, full, contrastive).

I Diagnostic: what natural classes do we expect versus what natural
classes do certain combinations of logic/primitives predict?
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Why Model Theory and Logic?

I Finite Model Theory allows for the precise definition of relational
structures (e.g. - phonological strings (Libkin, 2004)).

I This method has been successful in comparing other types of phonological
representations (Strother-Garcia, 2019; Jardine et al., 2021; Oakden,
2020).

I Relationship to computational complexity and learnability
(Strother-Garcia et al., 2016; Vu et al., 2018; Chandlee et al., 2019).

Most importantly!
It allows for a way to quantify the differences between feature systems so that
we can move beyond relying solely on our intuitions.
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Phonological Features

Phonological features are present in some form in almost every modern theory
of phonology and are usually traced back to the Prague school (Trubetzkoy,
1939; Jakobson et al., 1951).

I Based on phonetic properties.
I Trubetzkoy: privative, gradual, or equipollent.

I Privative: [voice] vs []
I Gradual: [height 1], [height 2], ... [height n]
I Equipollent: [labial], [coronal], [dorsal]

I JFH: binary
I Binary: [+voice] vs [-voice]
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Natural Classes

I Natural classes are the result of partitioning a language’s segment
inventory using phonological features.

I Two traditional explanations for natural classes:
Phonetic: All segments in a natural class share one or more phonetic
property.
Distributional: All segments in a natural class are the target/trigger for
a phonological process.

I For the remainder of this talk I will assume the theory-dependent
definition of natural classes from Mielke (2008):
I A group of sounds in an inventory which share one or more distinctive

features, within a particular feature theory to the exclusion of all other
sounds in the inventory.
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Interpreting Feature Bundles: Conjunction

I Feature matrices are usually interpreted as the conjunction of
properties.

I ...an adequate feature system should permit any natural class of sounds to
be represented by the conjunction of features in a matrix (Kenstowicz
and Kisseberth, 1979, p. 241).

I Natural classes can be defined in terms of conjunctions of features...
(Odden, 2005, p. 49).

Phonological interpretation

I /n/ =


+coronal
+voice
+sonorant
-continuant
+nasal


I /n/ is +coronal AND +voice AND +sonorant AND -continuant ...
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Interpreting Feature Bundles: Zeros

I Many feature systems also include “0” notation to indicate no value for a
feature.

I This is sometimes used when a feature only applies to a certain class of
sounds.
I “Trivial Underspecification” (Steriade, 1995)

I There is also “temporary underspecification” where a certain feature is
not specified in the lexical representation and then filled in at the end of
the phonological derivation.
I . E.g. - voicing underspecification in sonorants (see Steriade (1995) for

more discussion and review).
I Raises the question of how to formally interpret 0’s.

8 / 27



An aside about disjunction

I What about disjunction?
I Disjunction was allowed for triggering environments in SPE (Chomsky

and Halle, 1968) using {}.
I Mielke (2008) claims that ∼97% of the phonologically active classes can

be described with the SPE feature system if disjunction is allowed.
I This is an increase of 26% from SPE’s coverage without disjunction.

Note!
Arbitrary levels of disjunction allow any subset of segments to form a natural
class.
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Phonological strings with model theory

I MC = 〈D, {Rσ|σ ∈ Σ},C〉

D = {1, 2}
Ra = {2}
Rb = {1}

C = {〈1, 2〉}
1

b

2

a
C

I Segmental word model for the string ba.
I Σ = {a, b}
I Can define feature values disjunctively using user-defined predicates, but

features are not primitive. In other words, features are epiphenomenal.
I voi(x) def

= Ra(x) ∨Rb(x).
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Phonological strings with model theory

I MC = 〈D, {Rσ|σ ∈ Σ},C〉

D = {1, 2}
R+voi = {1, 2}
R+lab = {1}
R-cont = {1}
R-syl = {1}
R+syl = {2}
R+back = {2}
R-high = {2}
C = {〈1, 2〉}

1

+voi
+lab
-cont
-syl

2

+voi
+back
-high
+syl

C

I Feature word model for the string ba.
I Σ = {+voi,+lab,-cont,-syl,+syl,+back,-high}
I Can define segments conjunctively using user-defined predicates because

features are primitive. In other words, segments are epiphenomenal.
I b(x) def

= +voi(x) ∧ +lab(x) ∧ -cont(x) ∧ -syl(x).
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Formal Building Blocks

I Conjunction and a limited form of negation seem to be the only two
logical connectives needed to define natural classes.

I I therefore focus on two subsets of Quantifier-Free First Order Logic.

I Conjunction of Positive Literals (CPL)
I Base case: For all atoms, P, “P” is a sentence.
I Inductive case: For all sentences A,B, “A ∧ B” is a sentence.

I Conjunction of Negative and Positive Literals (CNPL)
I Base case: For all atoms P, “P” and “¬P” are sentences.
I Inductive case: For all sentences A,B, “A ∧ B” is a sentence.
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Formal Building Blocks

I The atomic elements of our system will be the feature labels.
I Two sets of primitives will be considered.

I Univalent Primitives
I voi, son

I Bivalent Primitives
I +voi, -voi, +son, -son
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A Toy Feature System

Privative Full Contrastive
son voice son voice son voice

N + + + + + 0
D 0 + - + - +
T 0 0 - - - -

Note: this is a slightly altered version of Table 3 in Mayer and Daland (2020).

I What are the natural classes for each system?
I Privative: {N}, {N,D}
I Full: {N}, {N,D}, {D}, {T}, {D,T}
I Contrastive: {N}, {D}, {T}, {D,T}
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Possible combinations

I Each set of primitives can be used to form a model signature:
I Mυ = 〈D, voi, son,C〉
I Mβ = 〈D,+voi,+son,−voi,−son,C〉

I A representation scheme can be made for each feature system (full,
contrastive, binary) can be formed using each model signature, giving six
potential schemes:

I Mυ
f

I Mυ
p

I Mυ
c

I Mβ
f

I Mβ
p

I Mβ
c

I String models based on these schemes can then be interpreted using CPL
and CNPL logics to see what classes can be formed.
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Interpretation

I In each case I will model the string DNT
I Example words: bus, juice

I For the univalent models, I will assume that a + value means that
domain element gets labeled with the feature.

I The graphical representation of the three models are shown on the next
slide.
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Univalent Feature Models

Mυ
p = D

voi

N

son
voi

T
CC

Mυ
f = D

voi

N

son
voi

T
CC

Mc
c = D

voi

N

son

T
CC

Privative
son voice

N + +
D 0 +
T 0 0

Full
son voice

N + +
D - +
T - -

Contrastive
son voice

N + 0
D - +
T - -
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CPL(Mυ)

Mυ
p X Mυ

f 7 Mυ
c 7

son {N} {N} {N}
voi {N,D} {N,D} {D}
son ∧ voi {N} {N} {}
Missing – {D}, {T}, {D,T} {T}, {D,T}
Extra – – –

I CPL(Mυ
p ) = Privative

I CPL(Mυ
f ) ( Full

I CPL(Mυ
c) ( Contrastive

I Matches Privative system but otherwise under predicts.
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CNPL(Mυ)

Mυ
p 7 Mυ

fX Mυ
c 7

son {N} {N} {N}
¬son {D,T} {D,T} {D,T}
voi {N,D} {N,D} {D}
¬voi {T} {T} {N,T}
son ∧ ¬son {} {} {}
son ∧ voi {N} {N} {}
son ∧ ¬voi {} {} {N}
¬son ∧ voi {D} {D} {D}
¬son ∧ ¬voi {T} {T} {T}
voi ∧ ¬voi {} {} {}
Missing – – –
Extra {D}, {T}, {D,T} – {N,T}

I CNPL(Mυ
p ) ) Privative

I CNPL(Mυ
f ) = Full

I CNPL(Mυ
c) ) Contrastive

I Matches Full system but otherwise over predicts.
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CNPL and Equipollent Features

Features like [Labial], [Coronal] and [Dorsal] are often argued to be unary.

I With CNPL, if Coronal ∈ Σ then ¬Coronal must exist as a possible
natural class.

I This example should make it clear that CNPL effectively makes all
features binary.

I Note: this isn’t an argument specifically about Coronal, but rather a
more general point that every feature would always be binary.
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Interpretation Redux

I For the bivalent models I will assume that a + value means that the
domain element gets labeled with +voi or +son and that a − value means
that the domain element gets labeled with -voi or -son.

I The graphical representation of the the three models are shown on the
next slide.
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Bivalent feature models

Mβ
p = D

+voi

N

+son
+voi

T
CC

Mβ
f = D

+voi
-son

N

+voi
+son

T

-voi
-son

CC

Mβ
c = D

+voi
-son

N

+son

T

-voi
-son

CC

Privative
son voice

N + +
D 0 +
T 0 0

Full
son voice

N + +
D - +
T - -

Contrastive
son voice

N + 0
D - +
T - -
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CPL(Mβ)

Mβ
p X Mβ

f X Mβ
c X

+son {N} {N} {N}
-son {} {D,T} {D,T}
+voi {N,D} {N,D} {D}
-voi {} {T} {T}
+son ∧ -son {} {} {}
+son ∧ +voi {N} {N} {}
+son ∧ -voi {} {} {}
-son ∧ +voi {} {D} {D}
-son ∧ -voi {} {T} {T}
+voi ∧ -voi {} {} {}

I CPL(Mβ
p ) = Privative

I CPL(Mβ
f ) = Full

I CPL(Mβ
c ) = Contrastive
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Summary of CPL with Bivalent Primitives

I It can account for contrastive underspecification without creating
unwanted natural classes.

I It allows for flexibility in the type of oppositions that can be encoded
(binary, privative, equipollent).

I The logic on its own does not exclude an element from being both +voi
and −voi?
I Do we need to specify that we don’t want this through axioms?
I With CNPL it is impossible for an element to be both voi and ¬voi.
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Conclusion

I Logical negation turns every feature into a binary opposition.
I Contrastive-like systems that use {+,−, 0} require encoding the

valuations directly into the primitives.
I Deciding which of these is the “right” feature system lies beyond the

formal account given here.
I The findings here provide a roadmap for future work on how to best

represent different types of feature systems in a formal system.
I Model theory and logic are useful for exploring formal differences between

different feature systems.
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Thank you!

I I would like to thank Jeffrey Heinz, Charles Reiss, Karthik Durvasula, and
members of the the Stony Brook/Rutgers spring 2021 MathLing reading
group for helpful comments and discussion on this material. I would also
like to thank the anonymous reviewers for their constructive feedback.
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