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Overview

I Model theory and logic can be used as a meta-language to compare and
evaluate different types of phonological feature systems.

I Different feature systems mix {+,−, 0} in different ways (e.g. - privative,
full, contrastive).

I Tradeoffs between computation (logical language) and representation
(primitive symbols) allow us to key in on what the meaningful differences
between each system are.

I For instance, I show that if negation is used in the logical language it
effectively turns everything into a full (binary) system, erasing the goals
of the 0 valuations.
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In particular

I The plan: use different logics and representational primitives to see how
to formally represent three feature systems (privative, full, contrastive).

I Diagnostic: what natural classes do we expect versus what natural
classes do certain combinations of logic/primitives predict?
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Why Model Theory and Logic?

I Finite Model Theory allows for the precise definition of relational
structures (e.g. - phonological strings (Libkin, 2013)).

I This method has been successful in comparing other types of phonological
representations (Strother-Garcia, 2019; Jardine et al., 2020; Oakden,
2020).

I Relationship to computational complexity and learnability
(Strother-Garcia et al., 2016; Vu et al., 2018; Chandlee et al., 2019).

Most importantly!
It allows for a way to quantify the differences between feature systems so that
we can move beyond relying solely on our intuitions.
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Phonological Features

Phonological features are present in some form in almost every modern theory
of phonology and are usually traced back to the Prague school (Trubetzkoy,
1939; Jakobson et al., 1951).

I Based on phonetic properties.
I Trubetzkoy: privative, gradual, or equipollent.

I Privative: [voice] vs []
I Gradual: [height 1], [height 2], ... [height n]
I Equipollent: [labial], [coronal], [dorsal]

I JFH: binary
I Binary: [+voice] vs [-voice]
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Natural Classes

I Natural classes are the result of partitioning a language’s segment
inventory using phonological features.

I Two traditional explanations for natural classes:
Phonetic: All segments in a natural class share one or more phonetic
property.
Distributional: All segments in a natural class are the target/trigger for
a phonological process.

I For the remainder of this talk I will assume the theory-dependent
definition of natural classes from Mielke (2008):
I A group of sounds in an inventory which share one or more distinctive

features, within a particular feature theory to the exclusion of all other
sounds in the inventory.
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Interpreting Feature Bundles: Conjunction

I Feature matrices are usually interpreted as the conjunction of
properties.

I ...an adequate feature system should permit any natural class of sounds to
be represented by the conjunction of features in a matrix (Kenstowicz
and Kisseberth, 1979, p. 241).

I Natural classes can be defined in terms of conjunctions of features...
(Odden, 2005, p. 49).

Phonological interpretation

I /n/ =


+coronal
+voice
+sonorant
-continuant
+nasal


I /n/ is +coronal AND +voice AND +sonorant AND -continuant ...
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Interpreting Feature Bundles: Zeros

I Many feature systems also include “0” notation to indicate no value for a
feature. Below is a sample from Hayes (2011).

I How do we formally interpret 0? Logical negation may lead to problems...
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An aside about disjunction

I What about disjunction?
I Disjunction was allowed for triggering environments in SPE (Chomsky

and Halle, 1968) using {}.
I Mielke (2008) claims that ∼97% of the phonologically active classes can

be described with the SPE feature system if disjunction is allowed.
I This is an increase of 26% from SPE’s coverage without disjunction.

Note!
Arbitrary levels of disjunction allow any subset of segments to form a natural
class.
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Moving on...
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Phonological strings with model theory

I MC = 〈D, {Rσ|σ ∈ Σ},C〉

D = {1, 2}
Ra = {2}
Rb = {1}

C = {〈1, 2〉}
1

b

2

a
C

I Segmental word model for the string ba.
I Σ = {a, b}
I Can define feature values disjunctively using user-defined predicates, but

features are not primitive. In other words, features are epiphenomenal.
I voi(x) def

= Ra(x) ∨Rb(x).
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Phonological strings with model theory

I MC = 〈D, {Rσ|σ ∈ Σ},C〉

D = {1, 2}
R+voi = {1, 2}
R+lab = {1}
R-cont = {1}
R-syl = {1}
R+syl = {2}
R+back = {2}
R-high = {2}
C = {〈1, 2〉}

1

+voi
+lab
-cont
-syl

2

+voi
+back
-high
+syl

C

I Feature word model for the string ba.
I Σ = {+voi,+lab,-cont,-syl,+syl,+back,-high}
I Can define segments conjunctively using user-defined predicates because

features are primitive. In other words, segments are epiphenomenal.
I b(x) def

= +voi(x) ∧ +lab(x) ∧ -cont(x) ∧ -syl(x).
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Logical Languages

Predicate Logic
{Quantification, Disjunction, Negation, Conjunction}

⇓

Propisitional Logic
{Disjunction, Negation, Conjunction}

⇓

CNL/CNPL
{Conjunction, Negation only for atomic primitives}

⇓
CPL

{Conjunction}
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A Toy Feature System

Privative Full Contrastive
son voice son voice son voice

N + + + + + 0
D 0 + - + - +
T 0 0 - - - -

Note: this is a slightly altered version of Table 3 in Mayer and Daland (2020).

I What groups of natural classes might we expect for each system?
I Privative: {N}, {N,D}
I Full: {N}, {N,D}, {D}, {T}, {D,T}
I Contrastive: {N}, {D}, {T}, {D,T}
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Formal Building Blocks: Logics

Logics
I Conjunction of Positive Literals (CPL)

I Base case: For all atoms, P, “P” is a sentence.
I Inductive case: For all sentences A,B, “A ∧ B” is a sentence.

I Conjunction of Negative and Positive Literals (CNPL)
I Base case: For all atoms P, “P” and “¬P” are sentences.
I Inductive case: For all sentences A,B, “A ∧ B” is a sentence.
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Formal Building Blocks: Primitives

Primitives
I Univalent Primitives

I voi, son
I Bivalent Primitives

I voi, non-voi, son, non-son
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Possible combinations

Change in representation
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Interpretation

I We can also use model theory to translate a segmental string into one
with feature values.

I This is done by defining the output string in terms of the input string:
φP(x)

def
= Q(x).

I Read as: “Domain element x has property P in the output if it had
property Q in the input.”

I P and Q are logical statements.
I See appendix if interested.

I As a first approximation I will assume the features are {voi, son} and a
+ value means that domain element gets labeled with the feature.

I Three translations: TP , TF , TC
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Basic Segmental Model

I Successor model with segments for string TDN: MC
TDN

D = {1, 2, 3}
RT = {1}
RD = {2}
RN = {3}
C = {〈1, 2〉 〈2, 3〉}

1

T

2

D

3

N
C C
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Translations from segment model to univalent feature
model

TP(MC
TDN) = T D

voi

N

son
voi

C C

TF (MC
TDN) = T D

voi

N

son
voi

C C

TC(MC
TDN) = T D

voi

N

son
C C

Privative
son voice

N + +
D 0 +
T 0 0

Full
son voice

N + +
D - +
T - -

Contrastive
son voice

N + 0
D - +
T - -
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CPL(son,voi)

Privative X Full 7 Contrastive 7

son {N} {N} {N}
voi {N,D} {N,D} {D}
son ∧ voi {N} {N} {}
Missing – {D}, {T}, {D,T} {T}, {D,T}
Extra – – –

I CPL(TP) = Privative
I CPL(TF ) ( Full
I CPL(TC) ( Contrastive
I Matches Privative system but otherwise under predicts.
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...

Change in representation
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CNPL(voi,son)

Privative 7 Full X Contrastive 7

son {N} {N} {N}
¬son {D,T} {D,T} {D,T}
voi {N,D} {N,D} {D}
¬voi {T} {T} {N,T}
son ∧ ¬son {} {} {}
son ∧ voi {N} {N} {}
son ∧ ¬voi {} {} {N}
¬son ∧ voi {D} {D} {D}
¬son ∧ ¬voi {T} {T} {T}
voi ∧ ¬voi {} {} {}
Missing – – –
Extra {D}, {T}, {D,T} – {N,T}

I CNPL(TP) ) Privative
I CNPL(TF ) = Full
I CNPL(TC) ) Contrastive
I Matches Full system but otherwise over predicts.
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...

Change in representation
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CNPL and Equipollent Features

Features like [Labial], [Coronal] and [Dorsal] are often argued to be unary.

I With CNPL, if Coronal ∈ Σ then ¬Coronal must exist as a possible
natural class.

I This example should make it clear that CNPL effectively makes all
features binary.

I Note: this isn’t an argument specifically about Coronal, but rather a
more general point that every feature would always be binary.
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Interpretation Redux

I We need updated feature translations if we change our primitives to
include both positive and negative features.

I As a second approximation I will assume the features are {voi, son,
non-voi, non-son}

I A + value means that the domain element gets labeled with voi or son.
I A − value means that the domain element gets labeled with non-voi or

non-son.
I Three translations: TP′ , TF ′ , TC′
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Translations from segment model to bivalent feature
model

TP′(MC
TDN) = T D

voi

N

son
voi

C C

TF ′(MC
TDN) = T

non-voi
non-son

D

voi
non-son

N

voi
son

C C

TC′(MC
TDN) = T

non-voi
non-son

D

voi
non-son

N

son
C C

Privative
son voice

N + +
D 0 +
T 0 0

Full
son voice

N + +
D - +
T - -

Contrastive
son voice

N + 0
D - +
T - -
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CPL(voi,non-voi,son,non-son)

Privative X Full X Contrastive X

son {N} {N} {N}
non-son {} {D,T} {D,T}
voi {N,D} {N,D} {D}
non-voi {} {T} {T}
son ∧ non-son {} {} {}
son ∧ voi {N} {N} {}
son ∧ non-voi {} {} {}
non-son ∧ voi {} {D} {D}
non-son ∧ non-voi {} {T} {T}
voi ∧ non-voi {} {} {}

I CPL(TP′) = Privative
I CPL(TF ′) = Full
I CPL(TC′) = Contrastive
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Questions going forward...

Change in representation
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Summary of CPL with Bivalent Primitives

I It can account for contrastive underspecification without creating
unwanted natural classes.

I It allows for flexibility in the type of oppositions that can be encoded
(binary, privative, equipollent).

I The logic on its own does not exclude an element from being both voice
and non-voice?
I Do we need to specify that we don’t want this through axioms?
I With CNPL it is impossible for an element to be both voice and ¬voice.
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Conclusion

I Model theory and logic are useful for exploring formal differences between
different feature systems.

I Logical negation turns every feature into a binary opposition.
I Contrastive-like systems that use {+,−, 0} require encoding the

valuations directly into the primitives.
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Thank you!

I A special thank you goes out to Jeffrey Heinz, Karthik Durvasula, Nick
Danis, Charles Reiss, Eric Baković, and the Stony Brook/Rutgers Spring
2021 MathLing Reading Group for helpful comments and discussion on
this material.
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Translation into feature model (Primitive + Full)

I TP = TF

φC(x, y)
def
= C(x, y)

φson(x)
def
= N(x)

φvoi(x)
def
= D(x) ∨ N(x)

I Bottom graph shows
TP(MC

TDN) = TF (MC
TDN)

1

T

2

D

3

N
C C

1 2

voi

3

son
voi

C C
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Translation into Feature Model (Contrastive)

I TC

φC(x, y)
def
= C(x, y)

φson(x)
def
= N(x)

φvoi(x)
def
= D(x)

I Bottom graph shows TC(MC
TDN)

1

T
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D

3

N
C C

1 2

voi

3

son
C C
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Translation into feature model (Primitive) redux

I TP′

φC(x, y)
def
= C(x, y)

φson(x)
def
= N(x)

φvoi(x)
def
= D(x) ∨ N(x)

φnon-son(x)
def
= false

φnon-voi(x)
def
= false

I Bottom graph shows
TP′(MC

TDN)
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N
C C

1 2

voi

3

son
voi

C C
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Translation into feature model (Full) redux

I TF ′

φC(x, y)
def
= C(x, y)

φson(x)
def
= N(x)

φvoi(x)
def
= D(x) ∨ N(x)

φnon-son(x)
def
= D(x) ∨ T(x)

φnon-voi(x)
def
= T(x)

I Bottom graph shows
TF ′(MC

TDN)

1

T

2

D

3

N
C C

1

non-voi
non-son

2

voi
non-son

3

voi
son

C C
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Translation into Feature Model (Contrastive) redux

I TC′

φC(x, y)
def
= C(x, y)

φson(x)
def
= N(x)

φvoi(x)
def
= D(x)

φnon-son(x)
def
= D(x) ∨ T(x)

φnon-voi(x)
def
= T(x)

I Bottom graph shows
TC′(MC

TDN)
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