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Overview

Two things that are important to phonologists are:

Representations
Features
Autosegments
Gestures
...

Maps
E.g., final devoicing:
/bEd/7→[bEt]
/akab/ 7→[akap]
/bEn/7→[bEn]
/azaz/ 7→[azas]
...
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This Tutorial

1. Model Theory

2. First-order Logic

3. Interpretations

Representations

Maps
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Model Theory

What is the difference between these two words?

[aaa] and [aaaa]

elements of the structure

What is the difference between these two words?

[barp] and [brap]

order of elements

What is the difference between these two words?

[barp] and [parp]

properties of the elements
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Model Theory
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indices
order functions p and s
properties of the indices
Amodel signature is a collection of functions and
relations that are used to describe structures:

{p, s,S1...Sn}

Amodel is a structure in some signature:

⟨D;p, s,S1...Sn⟩
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Model Theory

Model Signatures for Phonological Representations

Segment strings {p, s,S1...Sn}
Feature strings {p, s,F1...Fn}
Autosegmental structures {p, s,A,F1...Fn}
Syllable trees {p, s,parent,ons,nuc,cod, σ}
Sign language structures {p, s,A, loc,L,M,Hi,Pi}
Articulatory structures {0,30,60, 180,G1...Gn}

Jardine (2017); Chandlee and Jardine (2019); Strother-Garcia (2019);
Jardine et al. (2021); Oakden (2020); Rawski (2020); Chadwick (2021);
Nelson (2022, 2023)
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Segment strings
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D = {1, 2, 3, 4, 5}
p(1) = 2, p(2) = 3, p(3) = 4, etc.
s(5) = 4, s(4) = 3, s(3) = 2, etc.

b = {2}
E = {3}
d = {4}
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Feature strings
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D = {1, 2, 3, 4, 5}
...

voice = {2,3,4}
obs = {2,4}
syll = {3}
cor = {4}
etc.
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Autosegmental structures
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A

D = {1, 2, 3, 4, 5, 6}
...

A(6) = 3, A(3) = 6
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Syllable trees

σ

9
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cod
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P P P

P P P

D = {1, 2, 3, 4, 5, 6, 7, 8, 9}
...

P(arent)(2) = 6, P(3) = 7, P(4) = 8, P(6) = 9, P(7) = 9, P(8) = 9
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First-order Logic

Why logic?
Logic allows us to formalize our grammars/theories as
sets of axioms that we can use to formally analyze and
compare the types of structures that comply with a given
theory.
The computational complexity of logics are well known
(McNaughton and Papert, 1971; Simon, 1975; Immerman,
1980; Rogers et al., 2013, et seq.)
We can study the interaction of complexity and
representation by changing the model while keeping the
power of the logic fixed.
Logical formalisms make for strong hypotheses about
the complexity of phonology (Rogers et al., 2013; Heinz,
2018)
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First-order Logic

First-order logic describes truth conditions of structures

Name Meaning

x, y, z variables Elements
R1...Rn relations Order/Properties
F1...Fn functions Order/Properties

∧ conjunction “And”
∨ disjunction “Or”
¬ negation “Not”
→ implication “If...then”
↔ bi-direction “Same”
∃ existential quantifier “There Exists”
∀ universal quantifier “For All”

12



First-order logic

For any signature Σ, a Σ-formula is a logical formula
where all the non-logical symbols are drawn from Σ.

Suppose Σ = ⟨p, s,C,V,⋊,⋉⟩, which of the following are
Σ-formulas?

V(x) ∧⋉(s(x))

✓

G(x) ∧⋉(s(x))

✗

G(x) ∧⋉(A(x))

✗
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First-order logic
If A is a structure built from Σ and φ is a Σ-formula, then
we write A |= φ if φ(A) evaluates to true and say A
satisfies (ormodels) φ. Otherwise, A does not
satisfy/model φ.

Which of the following structures satisfy V(x) ∧⋉(s(x))?
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Maps as interpretations

Phonologists care about maps!

[−son] → [−voi] / #

FAITH,*D#≫ ID(voi)

⇓

/bEd/7→[bEt]
/akab/ 7→[akap]
/bEn/7→[bEn]

/azaz/ 7→[azas]
...
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Maps as interpretations

Defining new relations

⟨D;p, s, voi, son,⋊,⋉⟩

⋊

1

b

2

E

3

d

4

⋉

5

s s s s

p p p p

wdfinalobs(x) ≡ ¬son(x) ∧⋉(s(x))

1 2 3 4 5

son(x) ⊥ ⊥ ⊤ ⊥ ⊥
voi(x) ⊥ ⊤ ⊤ ⊤ ⊥
wdfinalobs(x) ⊥ ⊥ ⊥ ⊤ ⊥
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Maps as interpretations

Defining new structures

⟨D;p, s, voi, son,⋊,⋉⟩

⋊
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son′(x) ≡ ...
voi′(x) ≡ ...

voi(x) ∧ ¬wdfinalobs(x)
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Maps as interpretations
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Maps as interpretations

Defining new structures

son′(x) ≡ son(x)
voi′(x) ≡ voi(x) ∧ ¬wdfinalobs(x)

⋊ a k a b ⋉
1 2 3 4 5 6

son′(x) ⊥ ⊤ ⊥ ⊤ ⊥ ⊥
voi′(x) ⊥ ⊤ ⊥ ⊤ ⊥ ⊥

1′ 2′ 3′ 4′ 5′ 6′

⋊ a k a p ⋉
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Maps as interpretations

Maps so defined are local (Chandlee and Lindell,
forthcoming)
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Maps as interpretations

Recursive definitions

Iterative stress

σ 7→ σ́
σσ 7→ σ́σ
σσσ 7→ σ́σσ́
σσσσ 7→ σ́σσ́σ
σσσσσ 7→ σ́σσ́σσ́
σσσσσσ 7→ σ́σσ́σσ́σ

...
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Maps as interpretations

Recursive definitions

Iterative, non-final stress (e.g., Pintupi)

stress′(x) ≡ σ(x) ∧⋊(p(x))

⋊ σ σ σ σ σ σ ⋉
1 2 3 4 5 6 7 8

stress′(x) ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′

⋊ σ́ σ σ σ σ σ ⋉
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Maps as interpretations

Recursive definitions

Iterative, non-final stress (e.g., Pintupi)

stress′(x) ≡ σ(x) ∧
(
⋊(p(x)) ∨ stress′(p(p(x)))

)

⋊ σ σ σ σ σ σ ⋉
1 2 3 4 5 6 7 8

stress′(x) ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊥
1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′

⋊ σ́ σ σ́ σ σ́ σ ⋉
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Maps as interpretations

Recursive, quantifier-free definitions are called boolean
monadic recursive schemes (BMRS; Bhaskar et al.,
2020; Chandlee and Jardine, 2021)

Maps so defined are subsequential (Bhaskar et al.,
2020), meaning that they are myopic (Wilson, 2003;
Jardine, 2019)
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Next Steps

How do we learn logical grammars?

What does a tertiary feature system look like in BMRS?

BMRS captures elsewhere condition-type effects well.
What about non-derived environment blocking?

What is the status of intermediate representations?

How does BMRS capture the typology of stress
patterns?

... and many more!
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