Tutorial: Logic and Model Theory for Phonology

Jane Chandlee (Haverford College), Adam Jardine (Rutgers University), and Scott Nelson (Stony Brook University)

LSA 2024 | NYC

6 January 2024

Overview

Two things that are important to phonologists are:

Representations

Features Autosegments Gestures

•••

.

■ Maps E.g., final devoicing: /bɛd/↦[bɛt] /akab/↦[akap] /bɛn/↦[bɛn] /azaz/↦[azas]

This Tutorial

1. Model Theory

2. First-order Logic

3. Interpretations

This Tutorial

1. Model Theory

Representations

2. First-order Logic

Maps

3. Interpretations

This Tutorial

What is the difference between these two words? [aaa] and [aaaa]

What is the difference between these two words? [barp] and [brap]

What is the difference between these two words? [barp] and [parp]

What is the difference between these two words? [aaa] and [aaaa] elements of the structure What is the difference between these two words? [barp] and [brap] order of elements What is the difference between these two words? [barp] and [parp] properties of the elements

indices

- order functions *p* and *s*
- properties of the indices
- A *model signature* is a collection of functions and relations that are used to describe structures:

$\{\boldsymbol{p}, \boldsymbol{s}, \boldsymbol{S_1} ... \boldsymbol{S_n}\}$

A model is a structure in some signature:

$$\langle \mathsf{D};\mathsf{p},\mathsf{s},\mathsf{S}_1...\mathsf{S}_n\rangle$$

Model Signatures for Phonological Representations

Segment strings Feature strings Autosegmental structures Syllable trees Sign language structures Articulatory structures

```
 \{p, s, S_1...S_n\} \\ \{p, s, F_1...F_n\} \\ \{p, s, A, F_1...F_n\} \\ \{p, s, parent, ons, nuc, cod, \sigma\} \\ \{p, s, A, loc, L, M, H_i, P_i\} \\ \{0, 30, 60, 180, G_1...G_n\}
```

Jardine (2017); Chandlee and Jardine (2019); Strother-Garcia (2019); Jardine et al. (2021); Oakden (2020); Rawski (2020); Chadwick (2021); Nelson (2022, 2023)

Segment strings

$$D = \{1, 2, 3, 4, 5\}$$

p(1) = 2, p(2) = 3, p(3) = 4, etc.
s(5) = 4, s(4) = 3, s(3) = 2, etc.
b = \{2\}
 $\epsilon = \{3\}$
d = $\{4\}$

Feature strings

D = {1, 2, 3, 4, 5} : voice = {2,3,4} obs = {2,4} syll = {3} cor = {4} etc.

Autosegmental structures

Syllable trees

P(arent)(2) = 6, P(3) = 7, P(4) = 8, P(6) = 9, P(7) = 9, P(8) = 9

Why logic?

- Logic allows us to formalize our grammars/theories as sets of axioms that we can use to formally analyze and compare the types of structures that comply with a given theory.
- The computational complexity of logics are well known (McNaughton and Papert, 1971; Simon, 1975; Immerman, 1980; Rogers et al., 2013, et seq.)
- We can study the interaction of complexity and representation by changing the model while keeping the power of the logic fixed.
- Logical formalisms make for strong hypotheses about the complexity of phonology (Rogers et al., 2013; Heinz, 2018)

First-order logic describes truth conditions of structures

	Name	Meaning
x,y,z R ₁ R _n F ₁ F _n	variables relations functions	Elements Order/Properties Order/Properties
$\begin{array}{c} \wedge \\ \lor \\ \neg \\ \rightarrow \end{array}$	conjunction disjunction negation implication	"And" "Or" "Not" "Ifthen"
$ \stackrel{\leftrightarrow}{\exists} \\ \forall$	bi-direction existential quantifier universal quantifier	"Same" "There Exists" "For All"

For any signature Σ, a Σ-formula is a logical formula where all the non-logical symbols are drawn from Σ.

Suppose $\Sigma = \langle \mathbf{p}, \mathbf{s}, \mathbf{C}, \mathbf{V}, \rtimes, \ltimes \rangle$, which of the following are Σ -formulas?

- For any signature Σ, a Σ-formula is a logical formula where all the non-logical symbols are drawn from Σ.
- Suppose $\Sigma = \langle \mathbf{p}, \mathbf{s}, \mathbf{C}, \mathbf{V}, \rtimes, \ltimes \rangle$, which of the following are Σ -formulas?

$$\begin{array}{lll} \mathsf{V}(x) \land \ltimes (\mathsf{s}(x)) & \checkmark \\ \mathsf{G}(x) \land \ltimes (\mathsf{s}(x)) & \swarrow \\ \mathsf{G}(x) \land \ltimes (\mathsf{A}(x)) & \checkmark \end{array}$$

- If A is a structure built from Σ and φ is a Σ -formula, then we write $A \models \varphi$ if $\varphi(A)$ evaluates to true and say A satisfies (or *models*) φ . Otherwise, A does not satisfy/model φ .
- Which of the following structures satisfy $V(x) \land \ltimes (\mathbf{s}(x))$?

р

р

- If A is a structure built from Σ and φ is a Σ -formula, then we write $A \models \varphi$ if $\varphi(A)$ evaluates to true and say A satisfies (or *models*) φ . Otherwise, A does not satisfy/model φ .
- Which of the following structures satisfy $V(x) \land \ltimes (\mathbf{s}(x))$?

Phonologists care about maps!

 $[-son] \rightarrow [-voi] / ___ \#$ Faith.*D# \gg ID(voi) ∜ /bɛd/→[bɛt] /akab/→[akap] /bɛn/→[bɛn] $/azaz/\mapsto [azas]$

Defining new relations

 $\langle \mathbf{D}; \mathbf{p}, \mathbf{s}, \mathbf{voi}, \mathbf{son}, \rtimes, \ltimes \rangle$

wdfinalobs(x) $\equiv \neg$ son(x) $\land \ltimes (s(x))$

Defining new relations

 $\langle \mathbf{D}; \mathbf{p}, \mathbf{s}, \mathbf{voi}, \mathbf{son}, \rtimes, \ltimes \rangle$

wdfinalobs(x) $\equiv \neg son(x) \land \ltimes (s(x))$

	1	2	3	4	5
son(x)	\perp	\bot	Т	\bot	\perp
voi (<i>x</i>)	\bot	Т	Т	Т	\bot
wdfinalobs(x)	\perp	\perp	\bot	Т	\perp

Defining new relations

 $\langle \mathbf{D}; \mathbf{p}, \mathbf{s}, \mathbf{voi}, \mathbf{son}, \rtimes, \ltimes \rangle$

wdfinalobs(x) $\equiv \neg son(x) \land \ltimes (s(x))$

	1	2	3	4	5
son(x)	\bot	\bot	Т	\perp	\perp
voi (<i>x</i>)	\bot	\top	Т	Т	\bot
wdfinalobs(x)	\bot	\bot	\bot	Т	\bot
\neg wdfinalobs(x)	Т	Т	Т	\perp	Т

Defining new structures

 $\langle \mathsf{D}; \mathsf{p}, \mathsf{s}, \mathsf{voi}, \mathsf{son}, \rtimes, \ltimes \rangle$

 $son'(x) \equiv \dots$ $voi'(x) \equiv \dots$

Defining new structures

 $\langle \mathsf{D}; \mathsf{p}, \mathsf{s}, \mathsf{voi}, \mathsf{son}, \rtimes, \ltimes \rangle$

 $son'(x) \equiv son(x)$ $voi'(x) \equiv ...$

Defining new structures

 $\langle \mathsf{D}; \mathsf{p}, \mathsf{s}, \mathsf{voi}, \mathsf{son}, \rtimes, \ltimes \rangle$

$$son'(x) \equiv son(x)$$

 $voi'(x) \equiv voi(x) \land \neg wdfinalobs(x)$

Defining new structures

$$\mathbf{son}'(x) \equiv \mathbf{son}(x)$$

 $\mathbf{voi}'(x) \equiv \mathbf{voi}(x) \land \neg \mathbf{wdfinalobs}(x)$

	×	ь	ε	d	∝
	1	2	3	4	5
son'(x) voi'(x)	\perp	\perp T	T T	\perp	\perp

Defining new structures

$$\mathbf{son}'(x) \equiv \mathbf{son}(x)$$

 $\mathbf{voi}'(x) \equiv \mathbf{voi}(x) \land \neg \mathbf{wdfinalobs}(x)$

	× 1	b 2	ε 3	d 4	⊳ 5
son'(x) voi'(x)	\perp	$_{ op}^{\perp}$	T T	\perp	\perp
	1′	2′	3′	4′	5′
	\rtimes	b	3	\mathbf{t}	\ltimes

Defining new structures

$$\mathbf{son}'(x) \equiv \mathbf{son}(x)$$

 $\mathbf{voi}'(x) \equiv \mathbf{voi}(x) \land \neg \mathbf{wdfinalobs}(x)$

	× 1	a 2	k 3	a 4	b 5	∝ 6
$\mathbf{son}'(x)$	\bot	Т	\bot	Т	\bot	\bot
voi ′(x)	\perp	Т	\bot	Т	\perp	\perp
	1′	2′	3′	4′	5′	6′
	\rtimes	a	k	a	р	\ltimes

Maps so defined are local (Chandlee and Lindell, forthcoming)

Recursive definitions

Iterative stress

σ	\mapsto	$\dot{\sigma}$
$\sigma\sigma$	\mapsto	$\sigma\sigma$
$\sigma\sigma\sigma$	\mapsto	$\sigma\sigma\sigma$
$\sigma\sigma\sigma\sigma\sigma$	\mapsto	όσόσ
$\sigma\sigma\sigma\sigma\sigma\sigma$	\mapsto	όσόσό
$\sigma\sigma\sigma\sigma\sigma\sigma\sigma$	\mapsto	<i></i> σσσσσσσ

1

Recursive definitions

Iterative, non-final stress (e.g., Pintupi)

stress'(x)
$$\equiv \sigma(x) \land \rtimes(\rho(x))$$

	× 1	σ 2	σ 3	σ 4	σ 5	$\frac{\sigma}{6}$	σ 7	× 8
stress'(x)	\perp	Т	\bot	\bot	\bot	\bot	\bot	\perp
	1′	2′	3′	4′	5′	6′	7′	8′
	\rtimes	$\dot{\sigma}$	σ	σ	σ	σ	σ	\ltimes

Recursive definitions

Iterative, non-final stress (e.g., Pintupi)

stress'(x) $\equiv \sigma(x) \land (\rtimes(\rho(x)) \lor \text{stress}'(\rho(\rho(x))))$

	× 1	σ 2	σ 3	σ 4	σ 5	$\frac{\sigma}{6}$	σ 7	× 8
stress'(x)	\perp	Т	\bot	Т	\perp	Т	\perp	\perp
	1′	2′	3′	4′	5′	6′	7′	8′
	\rtimes	$\dot{\sigma}$	σ	$\dot{\sigma}$	σ	$\dot{\sigma}$	σ	\ltimes

- Recursive, quantifier-free definitions are called boolean monadic recursive schemes (BMRS; Bhaskar et al., 2020; Chandlee and Jardine, 2021)
- Maps so defined are subsequential (Bhaskar et al., 2020), meaning that they are myopic (Wilson, 2003; Jardine, 2019)

Next Steps

- How do we learn logical grammars?
- What does a tertiary feature system look like in BMRS?
- BMRS captures elsewhere condition-type effects well. What about non-derived environment blocking?
- What is the status of intermediate representations?
- How does BMRS capture the typology of stress patterns?
- ... and many more!

References I

- Bhaskar, S., Chandlee, J., Jardine, A., and Oakden, C. (2020). Boolean monadic recursive schemes as a logical characterization of the subsequential functions. In *Language and Automata Theory and Applications - LATA* 2020, Lecture Notes in Computer Science, pages 157–169. Springer.
- Chadwick, S. (2021). A computational analysis for articulatory phonology: A duel example with the phonotactic properties of rhotic consonants in english. Master's thesis, Stony Brook University.
- Chandlee, J. and Jardine, A. (2019). Autosegmental input-strictly local functions. Transactions of the Association for Computational Linguistics, 7:157–168.
- Chandlee, J. and Jardine, A. (2021). Computational universals in linguistic theory: Using recursive programs for phonological analysis. *Language*, 93:485–519.
- Chandlee, J. and Lindell, S. (forthcoming). A logical characterization of strictly local functions. In Heinz, J., editor, Doing Computational Phonology. OUP.
- Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman, L. and Plank, F., editors, Phonological Typology, Phonetics and Phonology, chapter 5, pages 126–195. De Gruyter Mouton.
- Immerman, N. (1980). First-order expressibility as a New Complexity Measure. PhD thesis, Cornell University.
- Jardine, A. (2017). On the logical complexity of autosegmental representations. In Kanazawa, M., de Groote, P., and Sadrzadeh, M., editors, *Proceedings of the 15th Meeting on the Mathematics of Language*, pages 22–35, London, UK. Association for Computational Linguistics.
- Jardine, A. (2019). Computation also matters: a response to pater (2018). Phonology, 36(2):341–350.
- Jardine, A., Danis, N., and Iacoponi, L. (2021). A formal investigation of q-theory in comparison to autosegmental representations. *Linguistic Inquiry*, 52(2):333–358.
- McNaughton, R. and Papert, S. (1971). Counter-Free Automata. MIT Press.
- Nelson, S. (2022). A model theoretic perspective on phonological feature systems. Proceedings of the Society for Computation in Linguistics, 5(1):1–10.
- Nelson, S. (2023). Model theoretic phonology and theory comparison: Segments, gestures, and coupling graphs. Presentation at North American Phonology Conference 12.
- Oakden, C. (2020). Notational equivalence in tonal geometry. Phonology, 37(2):257-296.
- Rawski, J. (2020). The logical nature of phonology across speech and sign. Unpublished Manuscript.
- Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complexity. In Formal Grammar, volume 8036 of Lecture Notes in Computer Science, pages 90–108. Springer.