Are Representations in Articulatory

and Generative Phonology so different?
Scott Nelson
scott.nelson@stonybrook.edu

Phonological Background

Representations are central to phonological theory (Anderson, 1985) Generative Phonology (Chomsky and Halle, 1968) uses linear or multilinear symbolic representations to describe input/output mappings. These structures are interpreted and physically realized by another module of the grammar Articulatory Phonology (Browman and Goldstein, 1992) is a theory of phonoogical representations based around non-linear dynamics which do not have input/output mappings and do not require a separate module for interpretation. exical items are represented as coupling graphs that dynamically determine a gestural score which describes how articulators form and release constrictions over time (Nam and Saltzman, 2003).

Model Theoretic Phonological Structures

Finite Model Theory can be used to formally define phonological structures (Libkin, 2004; Strother-Garcia, 2019; Oakden, 2020; Jardine et al., 2021). Relational models include domain elements \mathcal{D} and a set of relations \mathcal{R}.

```
\[
\langle\mathcal{D}:=\{1,2,3\}
\]
\[
a:=\{2\}
\]
\[
b:=\{1\}
\]
\[
p:=\{3\}
\]
\[
\triangleleft:=\{(1,2),(2,3)\}\rangle
\]
```


MSO Logic Graph Transductions

Translation between representational structures is done using monadic second order logic (Courcelle, 1994). Formulae such as $\varphi_{P}(x)=Q(x)$ are interpreted as "domain element x has property P in the output structure if it has property Q in the input structure". Additionally, one must specify how many copies of the input domain are needed and which copies are licensed in the output.

Definition (Friedman and Visser, 2014): We note that an interpretation K $U \rightarrow V$ gives us a construction of an internal model $\widetilde{K}(\mathcal{M})$ of U from a model $U \rightarrow V$ gives us a construction of an internal model $\widetilde{K}(\mathcal{M})$ of U from a model
M of V. We find that U and V are bi-interpretable iff, there are interpretations $K: U \rightarrow V$ and $M: V \rightarrow U$ and formulas F and G such that, for all models \mathcal{M} of V, the formula F defines an isomorphism between \mathcal{M} and $\widetilde{M} \widetilde{K}(\mathcal{M})$, and, for all models \mathcal{N} of U, the formula G defines an isomorphism between \mathcal{N} and $\widetilde{K} \widetilde{M}(\mathcal{N})$.

Main Research Question

Are strings and coupling graphs bi-interpretable?

Coupling Graph Model $\left(\mathcal{M}_{g}\right)$: [læft]

Relation	Label	Relation	Label
\diamond	In-phase	\triangleleft_{180}	Anti-phase
\triangleleft_{60}	Abutting	\triangleleft_{30}	Eccentric
LIPS	Labial Articulator	rel	Constriction Degree: release
TT	Tongue Tip Articulator	pro	Constriction Location: protruded
TB	Tongue Body Articulator	dent	Constriction Location: dental
VEL	Velum Articulator	alv	Constriction Location: alveolar
GLO	Glottis Articulator	palv	Constriction Location: postalveola
clo	Constriction Degree: closed	pal	Constriction Location: palatal
crit	Constriction Degree: critical	vel	Constriction Location: velar
nar	Constriction Degree: narrow	uvul	Constriction Location: uvular
V	Constriction Degree: vowel	phar	Constriction Location: pharyngeal
wide	Constriction Degree: wide		

Logical Transductions

Box 1: Copies of input domain structure are made Box 2: Unary relations are determined
Box 3: Binary relations are determined Box 4: Licit output domain elements are licensed

Conclusion

- Consequently, since $\mathcal{M}_{s} \equiv \Gamma^{g s}\left(\Gamma^{s g}\left(\mathcal{M}_{s}\right)\right)$ and $\mathcal{M}_{g} \equiv \Gamma^{s g}\left(\Gamma^{g s}\left(\mathcal{M}_{g}\right)\right)$, this indicates that string and coupling graph models are bi-interpretable.
-These results also show how logic and model theory provide a shared lan guage to talk about what are often thought to be incompatible theories.

