Perceptual Retuning Targets Features AMP 2017

Karthik Durvasula & Scott Nelson

Michigan State University

September 15th, 2017

1/28

Lexical Retuning Research Question

What is lexical retuning?

• Listeners must find a way to categorize ambiguous, unclear, or novel pronunciations of segments they hear.

Lexical Retuning Research Question

What is lexical retuning?

- Listeners must find a way to categorize ambiguous, unclear, or novel pronunciations of segments they hear.
- Listeners retune or shift their categorical boundaries for segments when presented with ambiguous tokens of target items in *lexical* words (Jesse and McQueen, 2011; Norris et al., 2003; McQueen et al., 2006).

Experiment Conclusion References Lexical Retuning Research Question

Categorical Boundary

3 / 28

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning Perceptual shift

Drighal Categories

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning Perceptual shift

Orginal Calegories $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000}$

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning

Perceptual shift

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning Perceptual shift

Original Categories 0.4 -Categories - Cet1 - Cat2 0.3 -Probability densities Continuum Dimension (e.g., [f-s]) [?_{fs}ijp], [?_{fs}luwθ], [?_{fs}lajm], ... "seep", "sleuth", "slime", ... Categories after perceptual retuning 0.4 -Categories - Cat1Chapped 0.3 -- Gat2 0.2 -0.0 -Continuum Dimension (e.g., [f-s])

<□▶ <□▶ <□▶ < ■▶ < ■▶ < ■▶ < ■ < ○へ (*) 4/28

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning

Perceptual shift

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning Perceptual shift

Original Categories

<□> <圕> <필> <필> <필> < => < => < </p>

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning Perceptual shift

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning

Perceptual shift

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning Perceptual shift

Original Categories 0.4 -Categories - Cet1 - Cat2 0.3 -Probability densities Continuum Dimension (e.g., [f-s]) [?_{fs}ejs], [?_{fs}li]], [?_{fs}luwt], ... "face", "flee", "flute", ... Categories after perceptual retuning 0.4 -Categories - Catt 0.3 -- Cat2Changed 0.2 -0.0 -Continuum Dimension (e.g., [f-s])

Experiment Conclusion References Lexical Retuning Research Question

Lexical Retuning

Perceptual shift

Lexical Retuning Research Question

Lexical Retuning Real words are necessary for the shift

• Presence of such ambiguous tokens in nonce words is not enough to shift the perception (Norris et al., 2003).

Lexical Retuning Research Question

Lexical Retuning Real words are necessary for the shift

- Presence of such ambiguous tokens in nonce words is not enough to shift the perception (Norris et al., 2003).
- When ambiguous segments appear in *real* words it gives the listener a target for what abstract segment to assign the novel pronunciation to.

Lexical Retuning Research Question

- Lexical Decision Task + Phonetic Categorization.
- 49 Native Speakers of Dutch.

Lexical Retuning Research Question

- Lexical Decision Task + Phonetic Categorization.
- 49 Native Speakers of Dutch.
- Listeners who heard ambiguous tokens in nonce words were used as control.

Lexical Retuning Research Question

- Lexical Decision Task + Phonetic Categorization.
- 49 Native Speakers of Dutch.
- Listeners who heard ambiguous tokens in nonce words were used as control.
- Listeners who heard ambiguous [f] words were more like to respond with 'f'.

Lexical Retuning Research Question

- Lexical Decision Task + Phonetic Categorization.
- 49 Native Speakers of Dutch.
- Listeners who heard ambiguous tokens in nonce words were used as control.
- Listeners who heard ambiguous [f] words were more like to respond with 'f'.
- Listeners who heard ambiguous [s] words were more like to respond with 'f'.

Lexical Retuning Research Question

• Most work thus far has assumed that the retuning is at the level of the segment (Norris et al., 2003; McQueen et al., 2006).

- Most work thus far has assumed that the retuning is at the level of the segment (Norris et al., 2003; McQueen et al., 2006).
 - Lexical retuning varies based on syllabic position (Jesse and McQueen, 2011).

- Most work thus far has assumed that the retuning is at the level of the segment (Norris et al., 2003; McQueen et al., 2006).
 - Lexical retuning varies based on syllabic position (Jesse and McQueen, 2011).
- However, there has been a lot of work that shows than perception taps into features.

- Most work thus far has assumed that the retuning is at the level of the segment (Norris et al., 2003; McQueen et al., 2006).
 - Lexical retuning varies based on syllabic position (Jesse and McQueen, 2011).
- However, there has been a lot of work that shows than perception taps into features.
 - Perceptual confusion (Miller and Nicely, 1955).

- Most work thus far has assumed that the retuning is at the level of the segment (Norris et al., 2003; McQueen et al., 2006).
 - Lexical retuning varies based on syllabic position (Jesse and McQueen, 2011).
- However, there has been a lot of work that shows than perception taps into features.
 - Perceptual confusion (Miller and Nicely, 1955).
 - Selective adaptation (also observed to be asymmetric) (Eimas and Corbit, 1973; Eimas et al., 1973).

Lexical Retuning Research Question

- Most work thus far has assumed that the retuning is at the level of the segment (Norris et al., 2003; McQueen et al., 2006).
 - Lexical retuning varies based on syllabic position (Jesse and McQueen, 2011).
- However, there has been a lot of work that shows than perception taps into features.
 - Perceptual confusion (Miller and Nicely, 1955).
 - Selective adaptation (also observed to be asymmetric) (Eimas and Corbit, 1973; Eimas et al., 1973).

• . . .

Lexical Retuning Research Question

Research Question

• We probe whether the perceptual retuning targets features.

Lexical Retuning Research Question

Research Question

- We probe whether the perceptual retuning targets features.
 - If so, listeners will be able to *transfer* its effects onto previously unobserved segments.

Lexical Retuning Research Question

Research Question

- We probe whether the perceptual retuning targets features.
 - If so, listeners will be able to *transfer* its effects onto previously unobserved segments.
 - Is there a change in the categorical boundary for the unobserved continuum?

Lexical Retuning Research Question

Research Question

- We probe whether the perceptual retuning targets features.
 - If so, listeners will be able to *transfer* its effects onto previously unobserved segments.
 - Is there a change in the categorical boundary for the unobserved continuum?
 - We particularly target the continua [f~s] and [v~z].

Lexical Retuning Research Question

Lexical retuning of features Expectations

• Lexical retuning of $[f \sim s]$ should also cause a similar retuning in $[v \sim z]$ without direct training.

Lexical Retuning Research Question

Lexical retuning of features Expectations

- Lexical retuning of $[f \sim s]$ should also cause a similar retuning in $[v \sim z]$ without direct training.
- If an ambiguous token appears in [f] words, then more /f/ responses, and more /v/ responses.

Lexical Retuning Research Question

Lexical retuning of features Expectations

- Lexical retuning of $[f \sim s]$ should also cause a similar retuning in $[v \sim z]$ without direct training.
- If an ambiguous token appears in [f] words, then more /f/ responses, and more /v/ responses.
- If an ambiguous token appears in [s] words, then more /s/ responses, and more /z/ responses.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

The following stimuli were used throughout the experiments:

• Two separate 41-step continua for voiced $(v \sim z)$ and voiceless $(f \sim s)$ segments spliced onto the onset of an [i] vowel.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

The following stimuli were used throughout the experiments:

- Two separate 41-step continua for voiced (v \sim z) and voiceless (f \sim s) segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

The following stimuli were used throughout the experiments:

- Two separate 41-step continua for voiced $(v \sim z)$ and voiceless $(f \sim s)$ segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).
 - Crucially, they did not form a minimal pair if replaced with the opposing segment.
Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

- Two separate 41-step continua for voiced $(v \sim z)$ and voiceless $(f \sim s)$ segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).
 - Crucially, they did not form a minimal pair if replaced with the opposing segment.
 - E.g. fool, cliff, soon, less, seat, fat.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

- Two separate 41-step continua for voiced $(v \sim z)$ and voiceless $(f \sim s)$ segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).
 - Crucially, they did not form a minimal pair if replaced with the opposing segment.
 - E.g. fool, cliff, soon, less, seat, fat.
- 116 filler words.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

- Two separate 41-step continua for voiced $(v \sim z)$ and voiceless $(f \sim s)$ segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).
 - Crucially, they did not form a minimal pair if replaced with the opposing segment.
 - E.g. fool, cliff, soon, less, seat, fat.
- 116 filler words.
 - 41 English words.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

- Two separate 41-step continua for voiced $(v \sim z)$ and voiceless $(f \sim s)$ segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).
 - Crucially, they did not form a minimal pair if replaced with the opposing segment.
 - E.g. fool, cliff, soon, less, seat, fat.
- 116 filler words.
 - 41 English words.
 - 75 phonotacticaly licit English nonce words.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Stimuli

- Two separate 41-step continua for voiced (v \sim z) and voiceless (f \sim s) segments spliced onto the onset of an [i] vowel.
- 34 English words containing [f] or [s] (17 of each; 9 where it occurred in onset and 8 where it occurred in coda).
 - Crucially, they did not form a minimal pair if replaced with the opposing segment.
 - E.g. fool, cliff, soon, less, seat, fat.
- 116 filler words.
 - 41 English words.
 - 75 phonotacticaly licit English nonce words.
 - Crucially, none of the filler words contained any instances of [f s v z].

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 14 steps used from the 41-step continua.
- 13 American English speakers.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 14 steps used from the 41-step continua.
- 13 American English speakers.
- Forced choice task.
 - [f~s] or [v~z].

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 14 steps used from the 41-step continua.
- 13 American English speakers.
- Forced choice task.
 - [f \sim s] or [v \sim z].

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 14 steps used from the 41-step continua.
- 13 American English speakers.
- Forced choice task.
 - [f \sim s] or [v \sim z].

Stimuli Stimuli Creation General Experiment Design Experiment Results

General Experiment Design

• Design was roughly based off Norris et al. (2003).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Design was roughly based off Norris et al. (2003).
- Three blocks.

Stimuli Stimuli Creation General Experiment Design Experiment Results

General Experiment Design

• Pre-LDT & Post-LDT: Phonetic Categorization Tests.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Pre-LDT & Post-LDT: Phonetic Categorization Tests.
 - Same test that was used in the stimulus creation experiment.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Pre-LDT & Post-LDT: Phonetic Categorization Tests.
 - Same test that was used in the stimulus creation experiment.
- Participants heard same continuum before and after LDT.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Pre-LDT & Post-LDT: Phonetic Categorization Tests.
 - Same test that was used in the stimulus creation experiment.
- Participants heard same continuum before and after LDT.
 - Experiment 1A: Voiceless [f~s] continuum. (35 Participants).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Pre-LDT & Post-LDT: Phonetic Categorization Tests.
 - Same test that was used in the stimulus creation experiment.
- Participants heard same continuum before and after LDT.
 - Experiment 1A: Voiceless [f~s] continuum. (35 Participants).
 - Experiment 1B: Voiced [v~z] continuum. (36 Participants).

Stimuli Stimuli Creation General Experiment Design Experiment Results

General Experiment Design

• Lexical Decision Task (LDT).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Lexical Decision Task (LDT).
 - 150 words.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Lexical Decision Task (LDT).
 - 150 words.
 - 34 critical test words (Containing [f] or [s]).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Lexical Decision Task (LDT).
 - 150 words.
 - 34 critical test words (Containing [f] or [s]).
 - $\bullet\,$ Words containing [f] were replaced with $[?_{\it fs}]$ ambiguous token.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Lexical Decision Task (LDT).
 - 150 words.
 - 34 critical test words (Containing [f] or [s]).
 - Words containing [f] were replaced with $[?_{fs}]$ ambiguous token.
 - 116 filler words (Containing no [f s v z]).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- Lexical Decision Task (LDT).
 - 150 words.
 - 34 critical test words (Containing [f] or [s]).
 - Words containing [f] were replaced with $[?_{fs}]$ ambiguous token.
 - 116 filler words (Containing no [f s v z]).
 - Were asked if the word they heard was a real English word.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Predictions slide

If retuning affects features

Note: [f] in f-words was replaced with $[?_{\it fs}]$ ambiguous token in LDT.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Predictions slide

If retuning affects features

Note: [f] in f-words was replaced with $[?_{\it fs}]$ ambiguous token in LDT.

Rightward move for [f] \sim [s]

Stimuli Stimuli Creation General Experiment Design Experiment Results

Predictions slide

If retuning affects features

Note: [f] in f-words was replaced with $[?_{fs}]$ ambiguous token in LDT.

Rightward move for $[v] \sim [z]$

Stimuli Stimuli Creation General Experiment Design Experiment Results

Important Check

• 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).
 - All participants but 2 passed this (both from experiment B).

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).
 - All participants but 2 passed this (both from experiment B).
- Participants in the experiment had reasonably high percentage of correct responses for the critical test words.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).
 - All participants but 2 passed this (both from experiment B).
- Participants in the experiment had reasonably high percentage of correct responses for the critical test words.
 - % correct for test words with $[?_{fs}] = 83$.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).
 - All participants but 2 passed this (both from experiment B).
- Participants in the experiment had reasonably high percentage of correct responses for the critical test words.
 - % correct for test words with $[?_{fs}] = 83$.
 - % correct for test words with [s] = 87.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).
 - All participants but 2 passed this (both from experiment B).
- Participants in the experiment had reasonably high percentage of correct responses for the critical test words.
 - % correct for test words with $[?_{fs}] = 83$.
 - % correct for test words with [s] = 87.
- This suggests that participants were willing to accept the modified words as good tokens of f-words.

Stimuli Stimuli Creation General Experiment Design Experiment Results

- 50% accuracy threshold for the words in the LDT ((Norris et al., 2003)).
 - All participants but 2 passed this (both from experiment B).
- Participants in the experiment had reasonably high percentage of correct responses for the critical test words.
 - % correct for test words with $[?_{fs}] = 83$.
 - % correct for test words with [s] = 87.
- This suggests that participants were willing to accept the modified words as good tokens of f-words.
- Therefore, we should expect phonetic re-tuning.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1A Pre- & Post-LDT: voiceless [f~s] continuum

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1A Pre- & Post-LDT: voiceless $[f \sim s]$ continuum

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1A Pre- & Post-LDT: voiceless [f~s] continuum

• Decrease in alveolar responses.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1A Pre- & Post-LDT: voiceless [f~s] continuum

- Decrease in alveolar responses.
- In the 7-27 step region [(t(34)=-4.4, p < 0.001].
Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1B Pre- & Post-LDT: voiced [v~z] continuum

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1B Pre- & Post-LDT: voiced [v~z] continuum

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1B Pre- & Post-LDT: voiced [v~z] continuum

• Decrease in alveolar responses.

Stimuli Stimuli Creation General Experiment Design Experiment Results

Experiment 1B Pre- & Post-LDT: voiced [v~z] continuum

- Decrease in alveolar responses.
- but in a smaller and different region (steps 28-35) [t(35)=-2.402, p < 0.05].

Conclusion Discussion

Conclusion

• Experiment A was a replication of past results.

Conclusion Discussion

- Experiment A was a replication of past results.
 - Re-tuning was confirmed to have occurred as the categorization space shifted from the *before* categorization task to the *after* categorization task.

Conclusion Discussion

- Experiment A was a replication of past results.
 - Re-tuning was confirmed to have occurred as the categorization space shifted from the *before* categorization task to the *after* categorization task.
- Experiment B shows that there is some evidence that re-tuning targets features.

Conclusion Discussion

- Experiment A was a replication of past results.
 - Re-tuning was confirmed to have occurred as the categorization space shifted from the *before* categorization task to the *after* categorization task.
- Experiment B shows that there is some evidence that re-tuning targets features.
 - This allows the corresponding *voiced* place features to change despite the listener only ever hearing ambiguous *voiceless* tokens.

Conclusion Discussion

- Experiment A was a replication of past results.
 - Re-tuning was confirmed to have occurred as the categorization space shifted from the *before* categorization task to the *after* categorization task.
- Experiment B shows that there is some evidence that re-tuning targets features.
 - This allows the corresponding *voiced* place features to change despite the listener only ever hearing ambiguous *voiceless* tokens.
- Others have argued that perceivers have categorical boundaries consistent with featural categories, and not segmental categories (Chládková et al., 2015).

Conclusion Discussion

What exactly is getting retuned?

• We have been somewhat agnostic about what kind of features are getting retuned?

Conclusion Discussion

- We have been somewhat agnostic about what kind of features are getting retuned?
 - Auditory vs. phonetic vs. phonological?

Conclusion Discussion

- We have been somewhat agnostic about what kind of features are getting retuned?
 - Auditory vs. phonetic vs. phonological?
- The same issue arises with other experimental paradigms looking at generalisations:

Conclusion Discussion

- We have been somewhat agnostic about what kind of features are getting retuned?
 - Auditory vs. phonetic vs. phonological?
- The same issue arises with other experimental paradigms looking at generalisations:
 - Learnability experiments or acceptability tasks.

Conclusion Discussion

- We have been somewhat agnostic about what kind of features are getting retuned?
 - Auditory vs. phonetic vs. phonological?
- The same issue arises with other experimental paradigms looking at generalisations:
 - Learnability experiments or acceptability tasks.
- It is unclear how one could tease them apart easily.

Conclusion Discussion

- We have been somewhat agnostic about what kind of features are getting retuned?
 - Auditory vs. phonetic vs. phonological?
- The same issue arises with other experimental paradigms looking at generalisations:
 - Learnability experiments or acceptability tasks.
- It is unclear how one could tease them apart easily.
- Would be useful to get some feedback on this.

Conclusion Discussion

Is feature retuning a better feature probe than priming

• There doesn't seem to be consistent or any priming for POA features (Parrish and Durvasula, prep).

Conclusion Discussion

- There doesn't seem to be consistent or any priming for POA features (Parrish and Durvasula, prep).
 - No evidence found in a series of experiments.

Conclusion Discussion

- There doesn't seem to be consistent or any priming for POA features (Parrish and Durvasula, prep).
 - No evidence found in a series of experiments.
- Priming in any way has lead to very inconsistent results for phonological representations, apart from segments (Schiller et al., 2002).

Conclusion Discussion

- There doesn't seem to be consistent or any priming for POA features (Parrish and Durvasula, prep).
 - No evidence found in a series of experiments.
- Priming in any way has lead to very inconsistent results for phonological representations, apart from segments (Schiller et al., 2002).
- It is possible that feature retuning might be a better probe.

Conclusion Discussion

- There doesn't seem to be consistent or any priming for POA features (Parrish and Durvasula, prep).
 - No evidence found in a series of experiments.
- Priming in any way has lead to very inconsistent results for phonological representations, apart from segments (Schiller et al., 2002).
- It is possible that feature retuning might be a better probe.
 - Perhaps, it can be used to study/understand cross-linguistic differences.

Conclusion Discussion

Acknowledgements

- MSU Phonology & Phonetics Group.
- Bethany Dickerson & Julia Andary.
- CAL Undergraduate Research Initiative.

Selected References

- Chládková, K., Boersma, P., and Benders, T. (2015). The perceptual basis of the feature vowel height. Proceedings of XVIII ICPhS 2015 (article 711). Glasgow.
- Eimas, P. D., Cooper, W. E., and Corbit, J. D. (1973). Some properties of linguistic feature detectors. Perception & Psychophysics, 13(2):247–252.
- Eimas, P. D. and Corbit, J. D. (1973). Selective adaptation of linguistic feature detectors. <u>Cognitive</u> Psychology, 4(1):99 – 109.
- Jesse, A. and McQueen, J. M. (2011). Positional effects in the lexical retuning of speech perception. Psychonomic Bulletin & Review, 18(5):943–950.
- McQueen, J. M., Cutler, A., and Norris, D. (2006). Phonological abstraction in the mental lexicon. Cognitive Science, 30:1113–1126.
- Miller, G. A. and Nicely, P. E. (1955). An analysis of perceptual confusions among some english consonants. The Journal of the Acoustical Society of America, 27(2):338–352.
- Norris, D., McQueen, J. M., and Cutler, A. (2003). Perceptual learning in speech. <u>Cognitive</u> Psychology, 30(2):1113–1126.
- Parrish, A. and Durvasula, K. (in prep.). Does priming tap into phonological representations?
- Schiller, N. O., Costa, A., and Colomé, A. (2002). Phonological encoding of single words: In search of the lost syllable. In Gussenhoven, C. and Natasha, W., editors, <u>Papers in Laboratory Phonology VII.</u> Mouton de Gruyter, Berlin.

Experiment 2

- Same general design as Experiment 1.
- Pre-LDT & Post-LDT were identical.
 - Experiment 2A: Voiceless [f~s] continuum. (23 Participants).
 - Experiment 2B: Voiced $[v \sim z]$ continuum. (22 Participants).
- LDT changed.
 - LDT now had critical test words containing [s] replaced with [?_{fs}] ambiguous token.
- Hypothesis: direction of change should be opposite of that found in Experiment 1.

Appendix 1 Experiment 2

30

Chosen Step

- Experiment 2A has a shift in the same direction as 1A.
 NOT the opposite as would be expected if there were segment/feature retuning.
- Experiment 2B has no visible shift.

- Per $_{\text{Norris et al. (2003)}},\,50\%$ accuracy threshold per participant for all the words in the LDT.
 - All participants passed this in Experiment 1.
 - Only 27 overall (out of a total 45 participants) in Experiment 2 (both conditions) had an accuracy threshold greater than 50 (on the LDT).
- Participants in Experiment 2 had an especially low percentage of correct responses for the critical test words.

- Per $_{\text{Norris et al. (2003)}},\,50\%$ accuracy threshold per participant for all the words in the LDT.
 - All participants passed this in Experiment 1.
 - Only 27 overall (out of a total 45 participants) in Experiment 2 (both conditions) had an accuracy threshold greater than 50 (on the LDT).
- Participants in Experiment 2 had an especially low percentage of correct responses for the critical test words.

- Per $_{\text{Norris et al. (2003)}},\,50\%$ accuracy threshold per participant for all the words in the LDT.
 - All participants passed this in Experiment 1.
 - Only 27 overall (out of a total 45 participants) in Experiment 2 (both conditions) had an accuracy threshold greater than 50 (on the LDT).
- Participants in Experiment 2 had an especially low percentage of correct responses for the critical test words.

- Per $_{\text{Norris et al. (2003)}},\,50\%$ accuracy threshold per participant for all the words in the LDT.
 - All participants passed this in Experiment 1.
 - Only 27 overall (out of a total 45 participants) in Experiment 2 (both conditions) had an accuracy threshold greater than 50 (on the LDT).
- Participants in Experiment 2 had an especially low percentage of correct responses for the critical test words.
 - % correct for test words with $[?_{fs}] = 83$.
 - % correct for test words with $[?_{fs}] = 27$.

- Per $_{\text{Norris et al. (2003)}},\,50\%$ accuracy threshold per participant for all the words in the LDT.
 - All participants passed this in Experiment 1.
 - Only 27 overall (out of a total 45 participants) in Experiment 2 (both conditions) had an accuracy threshold greater than 50 (on the LDT).
- Participants in Experiment 2 had an especially low percentage of correct responses for the critical test words.
 - % correct for test words with $[?_{fs}] = 83$.
 - % correct for test words with [s] = 87.
 - % correct for test words with $[?_{fs}] = 27$.
 - % correct for test words with [f] = 90.

Experiment 2 vs. Experiment 1

- Neither of the results from Experiment 2 showed a shift in the expected direction from before to after.
- Remnant [f]-cues in the vowels following [?_{fs}] could be affecting this.
- Does this nullify the results from Experiment 1?

